The answer is gravitational force. The gravitational force
between the earth and the moon is the similar as between any other two masses
in space.
Newton clarified that the force of attraction between two masses
is the outcome of the weight of object one multiplied by the weight of objects
two multiplied by the gravitational constant divided by the space between the
two masses squared.
Answer: solar winds
Explanation:
<u>A solar wind is composed of high speed charged particles (plasma) ejected from the Corona- the upper atmosphere of the Sun. </u>When the temperature of the corona crosses 2 million degrees, the rapidly moving particles are not held by the Sun's gravity and release away into the solar system.
<u>The Solar wind travels throughout the solar system and carries magnetic clouds along with it. It could be damaging to life if it could reach the surface but the planet's magnetic field shields us and redirects the material beyond it. </u>
Solar wind must have reached the planet Jupiter and Dr. Tate and Dr. Ramirez would be studying its effects.
Answer:
Let the height of the pole AB = x m. ∴ Length of shadow OB ol the pole AB = x m. Let the angle of elevation be ө, i.e. Hence, the angle of elevation of the Sun's altitude is 45°.
Explanation:
Answer:
B) shrinks
Explanation:
The magnetic force is a force exerted between two magnets, or two magnetic materials, or also on an electric charge moving in a magnetic field.
If we talk about magnetic material, the magnetic field they generates can be represented using a dipole: essentially, they have a north pole (where the lines of the field go out) and a south pole (where the lines of the field go in).
Also, the lines spread apart as we move away from the magnet itself. This means that the strength of the field (and so, the intensity of the force) decreases as we move away from the magnet.
Using this description, we can now understand that when we move the paper clip further from the magnet, the force exerted on the clip decreases, as the magnetic field becomes weaker. So, the correct answer is B.
Answer:
Explanation:
Venus's atmosphere is very thick, dry and hot whereas Mars's atmosphere is very thin and cold.
Both Venus's and Mars's atmospheres are about 95 percent carbon dioxide.
The surface temperature of Venus is around 890 degrees F, the hottest average temperature in the Solar System. This is due to abundance of greenhouse gasses. The atmosphere of Venus is composed of 97% CO2, 2% N2 and less than 1% of O2, H2O and CH4 (methane). Since CO2 is a major greenhouse gas, the radiation from the Sun is trapped in the atmosphere of Venus producing an extremely high surface temperature.
Mars has an atmospheric composition of 95% CO2, 3% N2, 2% Ar and less than 1% O2.A high noble gas content implies that Mar's atmosphere was much thicker in the past (noble gases do not react with other elements and are heavy enough to stay within the gravitational field of Mars). The climate on Mars is very desert-like due to its thin atmosphere. There is too little mass in the atmosphere to hold in heat so the warmest daytime temperatures are around 50 degrees F, but the nighttime temperatures are -170 degrees F. Other weather features are massive dust storms and occasional CO2 fog in the canyons.