it would be..... C
sorry if I am wrong I tryed to think, At least I try!
Answer:

Given:
Force = 8 N
Distance covered by the body = 50 cm = 0.5 m
Explanation:
Work Done = Force × Distance covered by the body
= 8 × 0.5
= 4 J
The power that the light is able to utilize out of the supply is only 0.089 of the given.
Power utilized = (0.089)(22 W)
= 1.958 W
= 1.958 J/s
The energy required in this item is the product of the power utilized and the time. That is,
Energy = (1.958 J/s)(1 s) = 1.958 J
Thus, the light energy that the bulb is able to produce is approximately 1.958 J.
The number of protons in an atom is known as the atomic number
Answer:
a) V = 465.9 m/s
b) θ = 70.529°
Explanation:
Let's first calculate angular velocity of earth:

Velocity of a person on Ecuador will be:


For part b, since angular velocity is the same:

Solving for θ:

