Only 0.7% of natural uranium is 'fissile', or capable of undergoing fission, the process by which energy is produced in a nuclear reactor. The form, or isotope, of uranium which is fissile is the uranium-235 (U-235) isotope. ... Most is then converted into uranium hexafluoride, ready for the enrichment plant.
<u>Answer:</u>
<em>The mineral we are talking about here is olivine.</em>
<u>Explanation:</u>
It is a bit dark in color which ranges between yellow to Green to olive green. The luster present in it is nonmetallic luster but has a glassy finish and a substance hardness that is ranging between 6.5 to 7.
This mineral has granular masses which we can say has mass like sugar grains. This mineral has cleavage with conchoidal fracture present in it.
Answer: -
24 grams per kilogram.
Explanation: -
We know that
The mixing ratio = actual (measured) mass of water vapor (in parcel) in grams / mass of dry (non water vapor) air (in parcel) in kilogram
The saturation mixing ratio = mass of water vapor required for saturation (in parcel) in grams/ mass of dry (non water vapor) air (in parcel) in kilograms
Relative humidity = actual (measured) water vapor content/ maximum possible water vapor amount (saturation)
Thus saturation mixing ratio = Mixing ratio / relative humidity
= 6 / (25/100)
= 24
<u>Answer:</u> The temperature of the system is 273 K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of carbon dioxide = 1 lb = 453.6 g (Conversion factor: 1 lb = 453.6 g)
Molar mass of carbon dioxide = 44 g/mol
Putting values in above equation, we get:

To calculate the temperature of gas, we use the equation given by ideal gas equation:
PV = nRT
where,
P = Pressure of carbon dioxide = 200 psia = 13.6 atm (Conversion factor: 1 psia = 0.068 atm)
V = Volume of carbon dioxide =
(Conversion factor:
)
n = number of moles of carbon dioxide = 10.31 mol
R = Gas constant = 
T = temperature of the system = ?
Putting values in above equation, we get:

Hence, the temperature of the system is 273 K
Answer:
C) 0.800 mol
Explanation:
In order to <u>convert from moles of Al₂O₃ into moles of Al</u>, we'll need to use<em> the stoichiometric coefficients</em>, using a conversion factor that has Al₂O₃ moles in the denominator and Al moles in the numerator:
- 0.400 mol Al₂O₃ *
= 0.800 mol Al
So the correct answer is option C).