1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
2 years ago
7

1. A garelle running 14 m/s does not see the high cliff ahead. The next day buzzards are seen cireling a

Physics
1 answer:
katovenus [111]2 years ago
8 0

The vertical motion of a dropped object from height is a motion that is caused by gravity alone

The height of the cliff and the speed of the bullet are:

1. The height of the cliff is <u>19.6 meters</u>

2. The speed of the bullet when it left the gun is approximately <u>2,245 m/s</u>

<u />

The reason the above values are the correct values are given as follows:

The given velocity of the gazelle, vₓ = 14 m/s

Location where buzzards are seen, d = 28 m from the base of the cliff

The height of the cliff = Required

Solution:

The gazelle fell off the cliff

The horizontal distance the gazelle covered during free fall, d = 28 meters

The time it takes the gazelle to travel the horizontal distance, t = The time of free fall, and is given as follows;

t = \dfrac{Horizontal \ distance}{Horizontal \ velocity} = \dfrac{d}{v_x}

Therefore;

t = \dfrac{28 \ m}{14 \ m/s} = 2 \ s

Vertical distance covered in the time falling freely = Height of the cliff, h

The formula for (vertical) distance, h = u·t + (1/2)·g·t²

Where;

u = The initial vertical velocity = 0

t = 2 seconds from above

g = Constant for the acceleration due to gravity ≈ 9.8 m/s²

Therefore;

h = 0 × 2 + (1/2) × 9.8 m/s² × (2 s)² ≈ 19.6 m

The height of the cliff, <em>h </em>= <u>19.6 m</u>

2. The known parameters:

The direction the bullet was shot = Horizontally

Height from which the bullet was shot, h = 1.4 meters above the ground

The horizontal distance the bullet travels before landing, d = 1.2 km

Required:

The speed with which the bullet left the gun, assuming no air resistance

Solution:

The vertical motion of the bullet is due to gravity and the initial vertical velocity, u = 0

Therefore;

h = u·t + (1/2)·g·t²

1.4 = (1/2) × 9.8 × t²

t² = 1.4/((1/2) × 9.8) = 2/7

t = √(2/7)

Velocity = \dfrac{Distance}{Time}

The\ speed \ of \ the \ bullet, v = \dfrac{1,200 \ m}{\sqrt{\dfrac{2}{7} } s} \approx 2,245 \ m/s

The speed of the bullet when it left the gun, v ≈ <u>2,245 m/s</u>

<u />

Learn more about free fall motion here:

brainly.com/question/2148964

You might be interested in
Find the speed vfinal of the joined cars after the collision. mastering physics
Tanya [424]
<span>Px = 0 Py = 2mV second, Px = mVcosφ Py = –mVsinφ add the components Rx = mVcosφ Ry = 2mV – mVsinφ Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²) and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²) simplifying Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²) Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²) Vf = (V/3)âš((cosφ)² + (2 – sinφ)²) Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ)) Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ)) using the identity sin²(Ď)+cos²(Ď) = 1 Vf = (V/3)âš1 + 4 – 2sinφ) Vf = (V/3)âš(5 – 2sinφ)</span>
6 0
3 years ago
Suppose the rocket in the Example was initially on a circular orbit around Earth with a period of 1.6 days. Hint (a) What is its
ruslelena [56]

Answer:

a

The orbital speed is v= 2.6*10^{3} m/s

b

The escape velocity of the rocket is  v_e= 3.72 *10^3 m/s

Explanation:

Generally angular velocity is mathematically represented as

            w = \frac{2 \pi}{T}

Where T is the period which is given as 1.6 days = 1.6 *24 *60*60 = 138240 sec

       Substituting the value

         w = \frac{2 \pi}{138240}

             = 4.54*10^ {-5} rad /sec

At the point when the rocket is on a circular orbit  

   The gravitational force =  centripetal force and this can be mathematically represented as

              \frac{GMm}{r^2} = mr w^2

Where  G is the universal gravitational constant with a value  G = 6.67*10^{-11}

            M is the mass of the earth with a constant value of M = 5.98*10^{24}kg

            r is the distance between earth and circular orbit where the rocke is found

               Making r the subject

                     r = \sqrt[3]{\frac{GM}{w^2} }

                        = \sqrt[3]{\frac{6.67*10^{-11} * 5.98*10^{24}}{(4.45*10^{-5})^2} }

                        = 5.78 *10^7 m

The orbital speed is represented mathematically as

                   v=wr

Substituting value

                  v= (5.78*10^7)(4.54*10^{-5})

                     v= 2.6*10^{3} m/s    

The escape velocity is mathematically represented as

                            v_e = \sqrt{\frac{2GM}{r} }

Substituting values

                             = \sqrt{\frac{2(6.67*10^{-11})(5.98*10^{24})}{5.78*10^7} }

                             v_e= 3.72 *10^3 m/s

7 0
3 years ago
An important diagnostic tool for heart disease is the pressure difference between blood pressure in the heart and in the aorta l
butalik [34]

Answer:

a)   f ’’ = f₀ \frac{1 + \frac{v}{c} }{1- \frac{v}{c} } , b)   Δf = 2 f₀ \frac{v}{c}

Explanation:

a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.

Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source

                    f ’= fo\frac{c+v}{c}

This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.

                   f ’’ = f’ \frac{c}{ c-v}

where c represents the sound velocity in stationary blood

therefore the received frequency is

                 f ’’ = f₀   \frac{c}{c-v}

let's simplify the expression

                f ’’ = f₀ \frac{c+v}{c-v}

                f ’’ = f₀ \frac{1 + \frac{v}{c} }{1- \frac{v}{c} }

         

b) At the low speed limit v <c, we can expand the quantity

                 (1 -x)ⁿ = 1 - x + n (n-1) x² + ...

                 ( 1- \frac{v}{c} ) ^{-1} = 1 + \frac{v}{c}

 

                f ’’ = fo ( 1+ \frac{v}{c}) ( 1 + \frac{v}{c} )

                f ’’ = fo ( 1 + 2 \frac{v}{c} + \frac{v^2}{ c^2} )

leave the linear term

               f ’’ = f₀ + f₀ 2\frac{v}{c}

the sound difference

               f ’’ -f₀ = 2f₀ v/c

               Δf = 2 f₀ \frac{v}{c}

4 0
2 years ago
A bicycle has a momentum of 36 kg* m/s and a very!I city of 4 m/s.What is the mass of the bicycle?
Strike441 [17]

p = 36 kgm/s

v = 4m/s

we know that,

p = mv

so,

m =  \frac{p}{v}

m  =  \frac{36}{4}

m = 9kg

8 0
3 years ago
¿Cuál es el volumen de un cubo de acero si se sabe que su masa es 50 hg, si la densidad del acero es 7850 kg/m3? Exprese el resu
Goshia [24]

Answer:

Conceptos y Magnitudes en

Fsica

Luciano LarozeNicols Porras Gonzalo Fuster

Ltda.

Tienes que reforzar la idea de que tu futura y exitosa profesin est en tus manos. El estudiar y aprender es un trabajo intenso que exige dedicacin y metodologa.

No debes.

7 0
2 years ago
Other questions:
  • Your car burns gasoline as you drive up a mountain road. What energy transformation is taking place?
    10·2 answers
  • A white-blue star is hotter than a red star.
    11·2 answers
  • When a substance has changed into something new or different so that the original substance is gone, as in digestion, radioactiv
    9·2 answers
  • A 2.5 kg steel gasoline tank can holds 20.0 L of gasoline when full. What is the average density (in Kg/m^3) of the full gas can
    15·1 answer
  • what is the resistance of a light bulb if a potential difference of 120 v will produce a current of 0.5 a in the bulb? 0.0042 0.
    10·2 answers
  • An example of an exothermic reaction is:
    8·1 answer
  • Lauren throws her first pitch of the season for her school's softball team. If the ball travels 80 feet and takes 1.58 seconds t
    5·1 answer
  • What is the force needed to throw a ball 7 meters when 1778 J of work is done?
    6·1 answer
  • An object is placed at O ona number line. It moves 3 units to the right, then 4 units to the left, and then 6 units to
    5·2 answers
  • Please help will be marked most brainlist !!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!