The atomic radius of main group elements generally increases down a group because as there are more electrons they are farther away from the nucleus and the electrons closer to the nucleus shield the outer electrons from the protons for attraction.
Answer:
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Explanation:
We have the reactants as calcium chloride and potassium carbonate. Recall that we are expecting that the reaction will yield a precipitate. We must keep that in mind as we seek to write its balanced chemical reaction equation.
So we now have;
CaCl2 (aq) + K2CO3(aq) ---------> CaCO3(s) + 2KCl(aq)
Recall that the rule of balancing chemical reaction equation states that the number of atoms of each element on the right side of the reaction equation must be the same as the number of atoms of the same element on the left hand side of the reaction equation.
Answer:
C
they store genetic information
Answer:
the Ray's go right through it
Explanation:
the Ray's are so small they punch right through them
Answer:
to the left
Explanation:
<u>If the concentration of products is increased for a reaction that is in equilibrium, the equilibrium would shift to the left side of the reaction (the reactant's side). </u>
For a reaction that is in equilibrium, the reaction is balanced between the reactants and the products. According to Le Cha telier's principle, if one of the constraints capable of influencing the rate of reactions is applied to such a reaction that is in equilibrium, the equilibrium would shift so as to neutralize the effects created by the constraint.
<em>Hence, in this case, if the concentration of the products of a reaction in equilibrium is increased, the equilibrium would shift in such a way that more reactants are formed so as to annul the effects created by the increase in the concentration of the products. Since reactants are always on the left side of chemical equations, it thus means that the equilibrium would shift to the left.</em>