it is defined as the ratio of moles of one substance to the moles of another substance in a balanced equation. To determine the mole ratio between two substances, all you need to do is look at the balanced equation for the coefficients in front of the substances you are interested in.
Answer:

Explanation:
Hello,
Considering the reaction:

The molar masses of chlorine and chloric acid are:

Now, we develop the stoichiometric relationship to find the mass of chloric acid, considering the molar ratio 3:1 between chlorine and chloric acid, as follows:

Best regards.
Answer:
(a) Covalent bond. NF₃ (nitrogen trifluoride)
(b) Ionic bond. LiCl (lithium chloride)
Explanation:
<em>(a) N and F</em>
Nitrogen and fluorine are nonmetals, with high and similar electronegativities, so they form covalent bonds, in which they share pairs of electrons to complete the octet in their valence shell. N has 5 valence electrons so it will form 3 covalent bonds while each Cl has 7 valence electrons so it will form 1 covalent bond. As a result, the empirical formula is NF₃ (nitrogen trifluoride).
<em>(b) Li and Cl</em>
Lithium is a metal and Chlorine is a nonmetal. They have different electronegativities so they form an ionic bond, in which Cl gains 1 electron (7 valence e⁻) and Li loses 1 electron (1 valence e⁻). The empirical formula is LiCl (lithium chloride).
Answer:
590 g CaCl₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
5.3 mol CaCl₂
<u>Step 2: Identify Conversions</u>
Molar Mass of Ca - 40.08 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of CaCl₂ - 40.08 + 2(35.45) = 110.98 g/mol
<u>Step 3: Convert</u>
<u />
= 588.194 g CaCl₂
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules and round.</em>
588.194 g CaCl₂ ≈ 590 g CaCl₂
Gases in which the molecules that make it up naturally consist of two atoms of the same type.