The person above is trying to give you a virus
Answer: 670K
Explanation:
Given that,
Original volume of gas V1 = 1.22 L
Original temperature T1 = 286 K
New volume V2 = 2.86 L
New temperature T2 = ?
Since volume and temperature are involved while pressure is constant, apply the formula for Charles law
V1/T1 = V2/T2
1.22 L/286 K = 2.86 L/ T2
Cross multiply
1.22 L x T2 = 286 K x 2.86 L
1.22T2 = 817.96
Divide both sides by 1.22
1.22T2/1.22 = 817.96/1.22
T2 = 670.459 K (Round to the nearest whole number as 670 K)
Thus, the temperature of the gas is 670 Kelvin
To estimate the molar mass of the gas, we use Graham's law of effusion. This relates the rates of effusion of gases with their molar mass. We calculate as follows:
r1/r2 = √(m2/m1)
where r1 would be the effusion rate of the gas and r2 is for CO2, M1 is the molar mass of the gas and M2 would be the molar mass of CO2 (44.01 g/mol)
r1 = 1.6r2
1.6 = √(44.01 / m1)
m1 = 17.19 g/mol
Answer: 50.7 grams
Explanation:
To calculate the moles, we use the equation:

a) moles of 
![\text{Number of moles}=molarity\times {\text {Volume in L]}=0.417M\times 0.528L=0.220moles](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20moles%7D%3Dmolarity%5Ctimes%20%7B%5Ctext%20%7BVolume%20in%20L%5D%7D%3D0.417M%5Ctimes%200.528L%3D0.220moles)
The balanced chemical equation is:

is the limiting reagent as it limits the formation of product and
is in excess.
According to stoichiometry :
2 moles of
give = 1 mole of 
Thus 0.220 moles of
give=
of 
Mass of 
Thus 50.7 g of
will be formed.