1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lisa [10]
3 years ago
8

Would water molecules in Venus’ atmosphere, whose temperature is 740 K, escape into outer space? A water molecule has a mass tha

t is 18 times that of a hydrogen atom. Recall that gas eventually will escape if the average velocity of its atoms is greater than 1/6 times the escape velocity of the planet. The escape velocity of Venus is 10 km/s.
Physics
1 answer:
Akimi4 [234]3 years ago
4 0

Answer:

The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus.

Explanation:

The average speed of gas molecules is given by:

v_{rms}=\sqrt{\frac{3RT}{M}}

R is the gas constant, T is the temperature and M the molar mass of the gas.

We know that a water molecule has a mass that is 18 times that of a hydrogen atom:

M_H=1.01*10^{-3}\frac{kg}{mol}\\M_{H2O}=18M_H=0.02\frac{kg}{mol}

So, we have:

v_{rms}=\sqrt{\frac{3(8.314\frac{J}{mol \cdot K})740K}{0.02\frac{kg}{mol}}}\\v_{rms}=960.65\frac{m}{s}*\frac{1km}{1000m}=0.96\frac{km}{s}

The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus:

10\frac{km}{s}*\frac{1}{6}=1.6\frac{km}{s}\\0.96\frac{km}{s}

You might be interested in
Two iron bolts of equal Mass one at a hundred see another at 55 Sierra place in the insulated cylinder assuming the heat capacit
malfutka [58]

Answer:

T_2 = 77.5c

Explanation:

From the question we are told that

Temp of first boltsT_1=100

Temp of 2nd bolt T_2=55

Generally the equation showing the relationship between  heat & temperature is given by

  q=cm \triangle T

Generally heat released  by the iron bolt  = heat gained by the iron bolt

Generally solving mathematically

     -(0.45*m* (T_2-100  \textdegree c)) = 0.45*m*(T_2 -55\textdegree c)

     -(T_2-100 \textdegree c)) = (T_2 -55 \textdegree c)

      T_2 +T_2= 100 \textdegree c+55 \textdegree c

      T_2=\frac{155 \textdegree c}{2}

      T_2 = 77.5 \textdegree c

Therefore T_2 = 77.5 \textdegree c is the final temperature inside the container

5 0
2 years ago
"Which of the following is true about the atom shown? Choose all that apply.
aalyn [17]
Option B & Option D is your correct answers.

'cause here, atom has eight electrons in it's valence shell, so it means it has stable structure which falls in group 18

Hope this helps!
8 0
3 years ago
Read 2 more answers
I left a location by 6:38am and arrived a new location by 6: 58am. How do I calculate the time spent?
jolli1 [7]

Answer:20 minutes

Explanation:

06:58am - 06:38am =20 minutes

6 0
3 years ago
Read 2 more answers
A block, M1=10kg, slides down a smooth, curved incline of height 5m. It collides elastically with another block, M2=5kg, which i
erma4kov [3.2K]

Answer:

2.86 m

Explanation:

Given:

M₁ = 10 kg

M₂ = 5 kg

\mu_k = 0.5

height, h = 5 m

distance traveled, s = 2 m

spring constant, k = 250 N/m

now,

the initial velocity of the first block as it approaches the second block

u₁ = √(2 × g × h)

or

u₁ = √(2 × 9.8 × 5)

or

u₁ = 9.89 m/s

let the velocity of second ball be v₂

now from the conservation of momentum, we have

M₁ × u₁ = M₂ × v₂

on substituting the values, we get

10 × 9.89 = 5 × v₂

or

v₂ = 19.79 m/s

now,

let the velocity of mass 2 when it reaches the spring be v₃

from the work energy theorem,  we have

Work done by the friction force = change in kinetic energy of the mass 2

or

0.5\times5\times9.8\times2 = \frac{1}{2}\times5\times( v_3^2-19.79^2)

or

v₃ = 20.27 m/s

now, let the spring is compressed by the distance 'x'

therefore, from the conservation of energy

we have

Energy of the spring =  Kinetic energy of the mass 2

or

\frac{1}{2}kx^2=\frac{1}{2}mv_3^2

on substituting the values, we get

\frac{1}{2}\times250\times x^2=\frac{1}{2}\times5\times20.27^2

or

x = 2.86 m

8 0
3 years ago
If the Earth were compressed in such a way that its mass remained the same, but the distance around the equator were just one-ha
vovikov84 [41]
If the distance around the equator is reduced by half, then the radius is also reduced by half.

Since the acceleration due to gravity is proportional to 1/(radius²),
the acceleration changes by a factor of 1/(1/2)² = 1/(1/4) = <em>4 </em>.

The acceleration due to gravity ... and also the weight of everything on Earth ...
becomes <em>4 times what it is now</em>.
6 0
3 years ago
Read 2 more answers
Other questions:
  • An L−R−C series circuit has 91.5 Ω , and the amplitude of the voltage across the resistor is 36.0 V . What is the average power
    6·1 answer
  • Please help!
    11·2 answers
  • A cannon fires a cannonball 500.0 m downrange when set at a 45.0o angle. At what velocity does the cannonball leave the cannon?
    5·1 answer
  • Of the following metals, which is the MOST reactive? A. Li B. Be C. Na D. Mg
    5·1 answer
  • How is thermal energy from the sun distributed on Earth ?
    12·1 answer
  • Answer please, anyone?
    8·1 answer
  • A stone falls from rest from the top of a cliff,a second stone is thrown do wnward from the same height 2sec later with an initi
    15·1 answer
  • SOS HELP ME
    12·1 answer
  • Please help with this one
    8·1 answer
  • Suppose the gravitational force between two spheres is 30 N. If the magnitude of both masses doubles, and the distance between t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!