Assuming air as ideal gas and amount of air in no of moles is known then by gas law,
PV= nRT
Pressure is constant
P* (change in volume) = nR* (change in temperature)
Answer:
Explanation:
7a) t = d/v = 100/45cos14.5 = 2.29533...= 2.30 s
7b) h = ½(9.81)(2.29533/2)² = 6.46056... = 6.45 m
or
h = (45sin14.5)² / (2(9.81)) = 6.47 m
which rounds to the same 6.5 m when limiting to the two significant digits of the initial velocity.
Answer:
the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Explanation:
The torque is given by :
where ;
m = 0.160 A.m²
B = 0.0800 T
θ = 35°
So the magnitude of the torque N = mBsinθ
N = (0.160)(0.0800)(sin 35°)
N = 0.007341
N = 7.34×10⁻³ Nm
Hence, the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
b) The potential energy
U = -mBcosθ
U = (- 0.160)(0.0800)(cos 45)
U = -0.010485
U = -1.0485 ×10⁻² J
Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
It is also tripled, there is a rule to everything, whatever you do to one thing, you do the exact thing to the other. Hope this solves it :)
Explanation:
Given that,
Mass of the ball, m = 1.2 kg
Initial speed of the ball, u = 10 m/s
Height of the floor from ground, h = 32 m
(a) Let v is the final speed of the ball. It can be calculated using the conservation of energy as :
v = -25.04 m/s (negative as it rebounds)
The impulse acting on the ball is equal to the change in momentum. It can be calculated as :
J = -42.048 kg-m/s
(b) Time of contact, t = 0.02 s
Let F is the average force on the floor from by the ball. Impulse acting on an object is given by :
F = 0.8409 N
Hence, this is the required solution.