Answer:

Explanation:
Let the charge on the ball bearing is q.
charge on glass bead, Q = 20 nC = 20 x 10^-9 C
Force between them, F = 0.018 N
Distance between them, d = 1 cm = 0.01 m
By use of Coulomb's law in electrostatics

By substituting the values


Thus, the charge on the ball bearing is 
Your question has been heard loud and clear.
Well it depends on the magnitude of charges. Generally , when both positive charges have the same magnitude , their equilibrium point is towards the centre joining the two charges. But if magnitude of one positive charge is higher than the other , then the equilibrium point will be towards the charge having lesser magnitude.
Now , a negative charge is placed in between the two positive charges. So , if both positive charges have same magnitude , they both pull the negative charge towards each other with an equal force. Thus the equilibrium point will be where the negative charge is placed because , both forces are equal , and opposite , so they cancel out each other at the point where the negative charge is placed. However if they are of different magnitudes , then the equilibrium point will be shifted towards the positive charge having less magnitude.
Thank you
I'm not accurately sure if you're asking for why the bulb of a thermometer is in a cylindrical shape. So let me continue. The shape of the which is thin and cylindrical in the shape is the increase of the effect of mercury in the tube to rise and fall depending on the contact temperature.