
Strength: able to detect planets in a wide range of orbits, as long as orbits aren't face on
Limitations: yield only planet's mass and orbital properties
Answer:
Explanation:
Given that, .
R = 12 ohms
C = 500μf.
Time t =? When the charge reaches 99.99% of maximum
The charge on a RC circuit is given as
A discharging circuit
Q = Qo•exp(-t/RC)
Where RC is the time constant
τ = RC = 12 × 500 ×10^-6
τ = 0.006 sec
The maximum charge is Qo,
Therefore Q = 99.99% of Qo
Then, Q = 99.99/100 × Qo
Q = 0.9999Qo
So, substituting this into the equation above
Q = Qo•exp(-t/RC)
0.9999Qo = Qo•exp(-t / 0.006)
Divide both side by Qo
0.9999 = exp(-t / 0.006)
Take In of both sodes
In(0.9999) = In(exp(-t / 0.006))
-1 × 10^-4 = -t / 0.006
t = -1 × 10^-4 × - 0.006
t = 6 × 10^-7 second
So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge
Answer:
The correct answer is - Characteristics.
Explanation:
On Earth, there are many organisms that shared similar characteristics with other organisms in various ways. These similarities of the characteristics could result from similar habitat, common ancestor, similar function, genetics, and many other reasons.
The example of such shared characteristics are different kinds of birds that have wings and lay eggs, while mammals give birth to babies and many other traits and characteristics. On the basis of the traits and characteristics organisms shared they are grouped and classified.
Answer:
E = {(Charge Density/2e0)*(1 - [z/(sqrt(z^2 - R^2))]}
R is radius = Diameter/2 = 0.210m.
At z = 0.2m,
Put z = 0.2m, and charge density = 2.92 x 10^-2C/m2, and constant value e0 in the equation,
E can be calculated at distance 0.2m away from the centre of the disk.
Put z = 0.3m and all other values in the equation,
E can be calculated at distance 0.3m away from the centre of the disk