Answer:
118.166 volt
Explanation:
We have given number of turns N =345
Sides of the rectangular coils is 12 cm =0.12 m
So area A =0.12×0.12=0.0144 
Magnetic field B =0.45 T
Angular speed =505 rpm
Speed in rad/sec 
The emf is given by
For maximum emf sinwt =1
So 
<span>During a medical evaluation, the doctor can D. all of the above. It is the doctor's duty to do all of these things - to establish some guidelines for activities, to see whether these programs are appropriate for the person in question, and to help them pick activities that will be safe for them and which they will be able to do without harming their bodies. These are all the things that doctors do in order to help their patients lead a safe and healthy life.</span>
Answer:the maximum Hall voltage across the strip= 0.00168 V.
Explanation:
The Hall Voltage is calculated using
Vh= B x v x w
Where
B is the magnitude of the magnetic field, 5.6 T
v is the speed/ velocity of the strip, = 25 cm/s to m/s becomes 25/100=0.25m/s
and w is the width of the strip= 1.2 mm to meters becomes 1.2 mm /1000= 0.0012m
Solving
Vh= 5.6T x 0.25m/s x 0.0012m
=0.00168T.m²/s
=0.00168Wb/s
=0.00168V
Therefore, the maximum Hall voltage across the strip=0.00168V
To solve this problem it is necessary to apply the concepts related to wavelength depending on the frequency and speed. Mathematically, the wavelength can be expressed as

Where,
v = Velocity
f = Frequency,
Our values are given as
L = 3.6m
v= 192m/s
f= 320Hz
Replacing we have that


The total number of 'wavelengths' that will be in the string will be subject to the total length over the size of each of these undulations, that is,



Therefore the number of wavelengths of the wave fit on the string is 6.