Answer:
How long will it take to travel a distance of 96 km? Givens. Solving For ... An object accelerates 3.0 m/s2 when a force of 6.0 Newtons is applied to it.
Explanation:
Answer:
a) 250 N/m
b) 22.4 rad/s , 3.6 Hz , 0.28 sec
c) 0.3125 J
Explanation:
a)
F = force applied on the spring = 7.50 N
x = stretch of the spring from relaxed length when force "F" is applied = 3 cm = 0.03 m
k = spring constant of the spring
Since the force applied causes the spring to stretch
F = k x
7.50 = k (0.03)
k = 250 N/m
b)
m = mass of the particle attached to the spring = 0.500 kg
Angular frequency of motion is given as


= 22.4 rad/s
= frequency
Angular frequency is also given as
= 2 π
22.4 = 2 (3.14) f
= 3.6 Hz
= Time period
Time period is given as


= 0.28 sec
c)
A = amplitude of motion = 5 cm = 0.05 m
Total energy of the spring-block system is given as
U = (0.5) k A²
U = (0.5) (250) (0.05)²
U = 0.3125 J
Answer:
a. 05cm from x axis
b. 8cm from x axis
Explanation:
If the net magnetic field is zero and the currents are in the same direction then the thanks point is between the currents i1 and i2 as show in the attachment below
a. Given that i1= 5A and i2=3A
Let assume the null point is xcm from current i1, then the null point will be (4-x)cm from current i2 since the total length is 4cm.
Now the magnetic field of the current i1 from the null point= to magnetic field of current i2 from the null point
B1=B2
μi1/2πx=μi2/2π(4-x)
i1/x=i2/(4-x)
5/x=3/(4-x)
20-5x=3x
8x=20
8x=2.5cm
since from the left of x axis is 2cm, then the null point is 2.5-2 which 0.5cm from the origin x axis.
The null point is 0.5cm from the origin x axis
b. If both current are flowing in opposite direction, the null point lies outside of the current.
Then with same analysis let assume the first current i1 is xcm from the null point and since the total length is 4cm the second current i2 will be (x-4)cm from the null point.
Also the magnetic field of the current i1 from the null point = to magnetic field of current i2 from the null point
B1=B2
μi1/2πx=μi2/2π(x-4)
i1/x=i2/(x-4)
5/x=3/(x-4)
5x-20=3x
2x=20
x=10cm.
This shows that the distance of the null point from current i1 is 10cm and the current i1 is 2cm from the x axis, then the null point is 10-2=8cm from the origin x axis.
The null point is 8cm from the x axis.
Check the attachment to see the diagram of the current and the null points
We will use the formula p = mgh
p is potential energy.
m is mass of object in kg
g is acceleration due to gravity (9.8m/s²)
h is height of the objects displacement in meters.
p = mgh → mgh = p → h = p / mg
p is 14000j, m is 40kg and g is 9.8 m/s²
h = 14000 / 40 × 9.8 → h = 1400 / 392 → h = 35.7
Therefore , the cannonball was 35.7 meters high .
Answer:
The number of paces it would take to get to the Moon is 213,555,556 paces
Explanation:
The given length of Mr Galan's paces = 1.8 m/pace
The distance from the Earth to the Moon is, 384,400 km = 384,400,000 m
Therefore, the number of paces, "n", it would take to get to the Moon from the Earth is given as follows;
n = (The distance from the Earth to the Moon)/(The length of each Mr Galan's paces)
∴ n = 384,400,000 m/(1.8 m/pace) = 213,555,556 paces
The number of paces it would take to get to the Moon = n = 213,555,556 paces