Answer:
Scandium with an ion charge of +3
Explanation:
Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
Answer:
IV: speed of the fan
DV: time of cup ascent
Explanation:
Kinetic energy is the energy of mass in motion. The kinetic energy of an object is the energy it has because of its motion. As the speed of the fan increases, so does the kinetic energy, then it transfers energy to the Cup ascent.
Answer:
Newton's third law of motion.
Explanation:
We are told the force needed to throw the full soda can was more than that needed to throw the empty can.
Now, the weight of the full soda can will be more than that of the empty can. Therefore, the full can will demand more force than that of the empty can due to Newton's third law of motion which states that to every action, there is an equal and opposite reaction.