The second one if it’s on edge
Answer:
B. 17.15 watts
Explanation:
Given that
Time = 10 seconds
height = distance = 0.7 meters
weight of sack = mg = F = 245 newtons
Power = work done/ time taken
Where work done = force × distance
Substituting the given parameters into the formula
Work done = 245 newton × 0.7 meters
Work done = 171.5 J
Recall,
Power = work done/time
Power = 171.5 J ÷ 10
Power = 17.15 watts
Hence the power expended is B. 17.15 watts
Answer:
hope
that helps
Explanation:
D. The sleeper's heart rate, blood pressure, and breathing rate drop to their lowest levels.
The Greenhand degree is for first year or freshmen high school students. To receive the Greenhand degree, affiliates must have acceptable plans for a Supervised Agricultural Experience Program (SAEP) and make evident knowledge of the principle, code of ethics, motto, salute emblem, official dress, and important dates in FFA history. The Greenhand degree pin is made out of bronze for its strength and stability or durability.
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions