Answer:
The magnitude of the force on the wire is 2.68 N.
Explanation:
Given that,
Length of the wire, L = 5 m
Magnetic field, B = 0.37 T
Angle between wire and the magnetic field, 
Current in the wire, I = 2.9 A
We need to find the magnitude of the force on the wire. The magnetic force in the wire is given by :

So, the magnitude of the force on the wire is 2.68 N. Hence, this is the required solution.
Answer:
a) false b) true c) true d) false and e) true
Explanation:
a) false. All the energy applied is used for the phase change, so the temperature remains constant.
b) true. The kinetic energy is associated with the speed of the particles and they have more mobility in the liquid, therefore, more kinetic energy.
c) true. Since energy is used for state change
d) false. In general, mobility and temperature are proportional
e) true. Heat is the source of energy for the change of state
Answer:
I THINK IT'S <em>D.</em><em>.</em><em>.</em><em>.</em>
<em>HOPE </em><em>SO</em>
Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (
,
,
,
)
(2)
Free fall (
,
,
,
)
(3)
Now we created the graph speed-time, which can be seen below.