You need an additional point of data here: the enthalpy of fusion, or conversely the enthalpy of melting (they differ only by their sign). For water (or ice) that value is gotten from sources such as the internet
<span>ΔH°(fus) = 6.01 kJ/mole </span>
<span>Since you have 35 000g, how many moles do you have? </span>
<span>Moles H2O = 35000 g/(18.015 g/mole) = 1942.8 moles</span>
<span>So, take that ΔH°(fus) in kJ/mole, multiply by the number of moles, and there ya go!
</span>
6.01 x 1942.8 = 11,676 kJ of energy is released
Hope I helped!! xx
Answer:
matter is the correct answer.
Newton's three laws of motion can be used to describe the motion of the ice skating.
<h3>Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is acted upon by an external force.
- Based on this law, once the ice skating starts, it will continue endlessly unless external force stops it.
<h3>Newton's second law of motion</h3>
Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of an object.
- Based on this law, the force applied to the ice skating is equal to the product of mass and acceleration of the ice skating.
<h3>Newton's third law of motion</h3>
This law states that action and reaction are equal and opposite.
- Based on this law, the force applied to the ice skating is equal in magnitude to the reaction of ice.
Learn more about Newton's law here: brainly.com/question/3999427
Answer: Transverse waves have motion perpendicular to velocity, while longitudinal waves have motion parallel to velocity.
Explanation:
Transverse waves are characterized by the fact that the particles of the medium in which they propagate move transversely to the direction of propagation of the wave.
In other words,<u> its displacement is perpendicular to the direction of propagation of the wave</u>, being a good example the circular waves in the water.
On the other hand, Longitudinal waves are characterized by the fact that <u>the oscillation of the particles in the medium is parallel to the direction of propagation of the wave.</u> A good example of this is the sound wave.