Answer:0.114 C
Explanation:
Given
Total 4.7 C is distributed in two spheres
Let
and
be the charges such that

and Force between charge particles is given by



put the value of 




thus 
The northward components of the resultant displacement is 40.96 m and the westward components of the resultant displacement of the bird from its nest is 28.68 m.
<h3>
Displacement of the bird</h3>
The displacement of the bird is the change in the position of the bird.
<h3>Vertical component of the bird's displacement </h3>
Vy₁ = -25 m x sin(55)
Vy₁ = -20.48 m
Vy₂ = 75 m x sin(55)
Vy₂ = 61.44 m
Total vertical displacement = 61.44 m - 20.48 m = 40.96 m
<h3>Horizontal component of the bird's displacement </h3>
Vx₁ = -25 m x cos(55)
Vx₁ = -14.34 m
Vx₂ = 75 m x cos(55)
Vx₂ = 43.02 m
Total horizontal displacement = 43.02 m - 14.34 m = 28.68 m
Learn more about displacement here: brainly.com/question/2109763
#SPJ1
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s