Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)
Answer:
Graph C
Explanation:
With the same force and more mass, the position in time will still be parabolic
i.e. x = ½at², but the rate of acceleration will be lower so the position curve will be broader.
Answer:
6370 J
Explanation:
By the law of energy conservation, the work done by the student would be the change in potential enegy from 1st floor to 3rd floor, or a change of 13 m

where m = 50kg is the mass of the student, g = 9.8 m/s2 is the gravitational constant and h = 13 m is the height difference

Answer:
The force is 
Explanation:
From the question we are told that
The mass of the block is 
The coefficient of static friction is 
The coefficient of kinetic friction is 
The normal force acting on the block is

substituting values


Given that the force we are to find is the force required to get the block to start moving then the force acting against this force is the static frictional force which is mathematically evaluated as

substituting values


Now for this block to move the force require is equal to
i.e

=> 