Answer:
Pretty sure its false, water increases electric shock
Explanation:
Here's the formula for the distance covered by an accelerating body in some amount of time ' T '. This formula is incredibly simple but incredibly useful. It pops up so often in Physics that you really should memorize it:
D = 1/2 a T²
Distance = (1/2)·(acceleration)·(time²)
This question gives us the acceleration and the distance, and we want to find the time.
(9,000 m) = (1/2) (20 m/s²) (time²)
(9,000 m) = (10 m/s²) (time²)
Divide each side by 10 m/s²:
(9,000 m) / (10 m/s²) = (time²)
900 s² = time²
Square root each side:
<em>T = 30 seconds</em>
Answer:
v<em>min</em> = 0.23 m/s
Explanation:
The golf ball must travel a distance equal to its diameter in the time between blade arrivals to avoid being hit. If there are 12 blades and 12 blade openings and they have the same width, then each blade or opening is 1/24 of a circle of is 2π/24 = 0.26 radians across.
Therefore, the time between the edge of one blade moving out of the way and the next blade moving in the way is
time = angular distance/angular velocity
⇒ t = 0.26 rad / 1.35 rad/s = 0.194 s
The golf ball must get completely through the blade path in this time, so must move a distance equal to its diameter in 0.194 s, therefore the speed of the golf ball is
v =d/t
⇒ v = 0.045 m / 0.194 s = 0.23 m/s
We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)