A curved line on a position/time graph shows that the speed is changing.
So right there, we know there is acceleration.
given that initial speed of the car is

now after travelling the distance d = 1.8 * 10^1 m the car will stop
so here we can use kinematics to find the acceleration of car


here we have


net force applied due to brakes of car is given by Newton's II law

here we have
mass = 1.2 * 10^3 kg


now we can say



So the force applied due to brakes is given as above
To make sure I don’t has 35 012345 bishops
Answer:
19.9 N/m
Explanation:
From the question,
Applying Hook's law
F = Ke.................. Equation 1
Where F = Force on the spring, k = spring constant, e = extension
But the force on the spring is the weight of the mass
Therefore,
mg = ke.................. Equation 2
Where m = mass. g = acceleration due to gravity
make e the subject of the equation
e = mg/e................ Equation 3
Given: m = 455 g = 0.455 kg, e = 22.4 cm = 0.224 m,
Constant: g = 9.8 m/s²
Substitute these values into equation 3
e = (0.455×9.8)/0.224
e = 19.9 N/m