The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.

If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :

So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
It will lead to rain. I know this because as the clouds move over water sources like oceans, lakes, and rivers, the water evaporates and rises. The water then liquefies into little water droplets. As the cloud moves over more water the droplets get scrunched up and get bigger over time and soon they get heavy and gravity pulls the droplets down to earth as rain. The End.
Answer:
Explanation:
Given that
The mass of the body is 0.04kg
M=0.04kg
The radius of the paths is 0.6m
r=0.6m
The normal force exerted at A is 3.9N
Fa=3.9N
The normal force exerted at B is 0.69N
Fb=0.69N
Then work done by friction from point A to B will be the change in K.E
W=∆K.E+P.E
So we need to know the velocity at both point A and B
Then since the centripetal force is given as
Ft=mv²/r
Then,
For point A
Fa=mv²/r
3.9=0.04v²/0.6
3.9=0.0667v²
v²=3.9/0.0667
v²=58.5
v=√58.5
v=7.65m/s
Va=7.65m/s
Now at point B
Fb=mv²/r
0.69=0.04v²/0.6
0.69=0.0667v²
v²=0.69/0.0667
v²=10.35
v=√10.35
v=3.22m/s
Vb=3.22m/s
Then, the work done is
W=∆K.E+P.E
P.E is given as mgh
The height will be 2R =1.2m
P.E=mgh
P.E=0.04×9.81×1.2
P.E=0.471J
Final kinetic energy at B minus initial kinetic energy at A
W=K.Eb-K.Ea
K.E is given as 1/2mv²
W=1/2m(Vb²-Va²) +P.E
W=0.5×0.04(3.22²-7.65²) +0.471
W=0.5×0.04×(-48.1541) +0.471
W=-0.96+0.471
W=-0.49J
work was done on the block by friction during the motion of the block from point A to point B is 0.49J.
Friction opposes motions and that is why the work done is negative
Answer:
638 m.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 94 m/s
Final velocity (v) = 22 m/s
Time (t) = 11 s
Distance (s) =?
We can obtain the distance travelled by using the following formula:
s = (u + v) t /2
s = (94 + 22) × 11 /2
s = 116 × 11 /2
s = 1276 /2
s = 638 m
Thus, the distance travelled is 638 m.
False theyre called plate boundries