As per Faraday's law of induction we know that induced EMF in a conducting closed loop is equal to rate of change in flux in that loop
So here we have

now when we move out a coil from magnetic field then in this case there will be EMF induced in that coil as here magnetic flux is changing with time linked with the coil.
Now this induced voltage will remain constant if coil is moved out uniformly
But it will not remain constant if coil is moved out with non uniform speed
So this statement is not always true
so answer must be
<u>FALSE</u>
The force required to start an object sliding across a uniform horizontal surface is larger than the force required to keep the object sliding at a constant velocity once it starts.
The magnitudes of the required forces are different in these situations because the force of kinetic friction is less than the force of static friction. <em>(d)</em>
Not sure if this answer is write or wrong but i think its <span>4500 watts
</span>
Answer: radio waves dont need a medium to travel through
Explanation:
Answer:
(a) Acceleration of electron= 5.993×10²⁰ m/s²
(b) Acceleration of proton= 3.264×10¹⁷ m/s²
Explanation:
Given Data
distance r= 6.50×10⁻¹⁰ m
Mass of electron Me=9.109×10⁻³¹ kg
Mass of proton Mp=1.673×10⁻²⁷ kg
Charge of electron qe= -e = -1.602×10⁻¹⁹C
Charge of electron qp= e = 1.602×10⁻¹⁹C
To find
(a) Acceleration of electron
(b) Acceleration of proton
Solution
Since the charges are opposite the Coulomb Force is attractive
So

From Newtons Second Law of motion
F=ma
a=F/m
For (a) Acceleration of electron

For(b) Acceleration of proton
