1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
3 years ago
13

Phil is a drill leader who yells at his squad when they do something wrong. He belittles them and is sarcastic to them.

Physics
2 answers:
aev [14]3 years ago
8 0

Answer:

What do you want me to answer here?

Explanation:

Naddika [18.5K]3 years ago
8 0

Answer:

i don't get it, what are you asking?

Explanation:

?

You might be interested in
A solar cell generates a potential difference of 0.25 V when a 550 Ω resistor is connected across it, and a potential difference
Andre45 [30]

a) 400 \Omega

b) 0.43 V

c) 0.44 %

Explanation:

a)

For a battery with internal resistance, the relationship between emf of the battery and the terminal voltage (the voltage provided) is

V=E-Ir (1)

where

V is the terminal voltage

E is the emf of the battery

I is the current

r is the internal resistance

In this problem, we have two situations:

1) when R_1=550 \Omega, V_1=0.25 V

Using Ohm's Law, the current is:

I_1=\frac{V_1}{R_1}=\frac{0.25}{550}=4.5\cdot 10^{-4} A

2) when R_2=1000 \Omega, V_2=0.31 V

Using Ohm's Law, the current is:

I_2=\frac{V_2}{R_2}=\frac{0.31}{1000}=3.1\cdot 10^{-4} A

Now we can rewrite eq.(1) in two forms:

V_1 = E-I_1 r

V_2=E-I_2 r

And we can solve this system of equations to find r, the internal resistance. We do it by substracting eq.(2) from eq(1), we find:

V_1-V_2=r(I_2-I_1)\\r=\frac{V_1-V_2}{I_2-I_1}=\frac{0.25-0.31}{3.1\cdot 10^{-4}-4.5\cdot 10^{-4}}=400 \Omega

b)

To find the electromotive force (emf) of the solar cell, we simply use the equation used in part a)

V=E-Ir

where

V is the terminal voltage

E is the emf of the battery

I is the current

r is the internal resistance

Using the first set of data,

V=0.25 V is the voltage

I=4.5\cdot 10^{-4}A is the current

r=400\Omega is the internal resistance

Solving for E,

E=V+Ir=0.25+(4.5\cdot 10^{-4})(400)=0.43 V

c)

In this part, we are told that the area of the cell is

A=4.0 cm^2

While the intensity of incoming radiation (the energy received per unit area) is

Int.=5.5 mW/cm^2

This means that the power of the incoming radiation is:

P=Int.\cdot A=(5.5)(4.0)=22 mW = 0.022 W

This is the power in input to the resistor.

The power in output to the resistor can be found by using

P'=I^2R

where:

R=1000 \Omega is the resistance of the resistor

I=3.1\cdot 10^{-4} A is the current on the resistor (found in part A)

Susbtituting,

P'=(3.1\cdot 10^{-4})^2(1000)=9.61\cdot 10^{-5} W

Therefore, the efficiency of the cell in converting light energy to thermal energy is:

\epsilon = \frac{P'}{P}\cdot 100 = \frac{9.6\cdot 10^{-5}}{0.022}=0.0044\cdot 100 = 0.44\%

7 0
3 years ago
When drawing a Bohr model for an element that has 16 electrons, how many electrons would be placed in the third energy level?
lubasha [3.4K]
There would be 6 electrons placed on the third energy level.
5 0
3 years ago
A straight trail with a uniform inclination of 15 degrees leads from a lodge at an elevation of 600 feet to a mountain lake at a
9966 [12]

Answer:

The length of the trail = 22796 ft

Explanation:

From the ΔABC

AC = length of the trail = x

AB = 6100 - 600 = 5500 ft

Angle of inclination \theta = 15°

\sin \theta = \frac{AB}{AC}

\sin 15 = \frac{5900}{x}

x = \frac{5900}{0.2588}

x = 22796 ft

Since x = AC = Length of the trail.

Therefore the length of the trail = 22796 ft

7 0
3 years ago
An empty 2,500 kg train car is headed northbound at a velocity of 5 m/s. Ahead of the first car, an empty 1,500 kg car is headed
Tema [17]

Let the mass of 2500 kg car be m_1 and it's velocity be v_1 and the mass of 1500 kg car be m_2 and it's velocity be v_2 .

After the bumping the mass be M and it's velocity be V.

     By law of conservation of momentum we have

                   m_1v_1+m_2v_2 = MV

                    2500 * 5 + 1500 * 1=4000 * V

                    V = 14000/4000 = 7/2 = 3.5 m/s

So the velocity of the two-car train = 3.5 m/s

9 0
3 years ago
Select the correct arrow.<br> Which arrow correctly shows the flow of heat?<br> Reset<br> Next
julsineya [31]

Answer:

where is the image?

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is a resource that is constantly being replenish
    12·1 answer
  • Is there is only one tool used to heat equipment in the laboratory.
    7·2 answers
  • Which of these would have the largest volume?
    15·2 answers
  • A yellow ball with a mass of 2 kg is rolling across the floor at 3 m/s. A red ball with a mass of 3 kg is rolling across the sam
    7·2 answers
  • A capacitor with an initial potential difference of 100 V isdischarged through a resistor when a switch between them is closed a
    13·1 answer
  • As you move further from a light source, the photons of light spread out over a larger distance. In other words, the light _____
    15·1 answer
  • If an object is neutrally buoyant (does not sink or float) in fresh water, the same object placed into salt water wouldA sink.B
    9·1 answer
  • The source of all magnetism is. A. tiny pieces of iron. B. tiny domains of aligned atoms. C. Ferromagnetic materials. D. moving
    6·2 answers
  • Calculate the kinetic energy of a 5.0kg object moving at 4.0 m/s
    13·1 answer
  • Nearly of women who had recently given birth screen positive for peripartum onset depression.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!