Answer:
s=1721.344m ,v=104.96m/s.
Explanation:
using thr equation of motion;

u=0, plane starts from rest,


s=1721.344m
v=u+at
v=0 +3.2*32.8
v=104.96m/s
Answer is B- 200 m
Given:
m (mass of the car) = 2000 Kg
F = -2000 N
u(initial velocity)= 20 m/s.
v(final velocity)= 0.
Now we know that
<u>F= ma</u>
Where F is the force exerted on the object
m is the mass of the object
a is the acceleration of the object
Substituting the given values
-2000 = 2000 × a
a = -1 m/s∧2
Consider the equation
<u>v=u +at</u>
where v is the initial velocity
u is the initial velocity
a is the acceleration
t is the time
0= 20 -t
t=20 secs
s = ut +1/2(at∧2)
where s is the displacement of the object
u is the initial velocity
t is the time
v is the final velocity
a is the acceleration
s= 20 ×20 +(-1×20×20)/2
<u>s= 200 m</u>
Answer:
Final speed of the car, v = 24.49 m/s
Explanation:
It is given that,
Initial velocity of the car, u = 0
Acceleration, 
Time taken, t = 7.9 s
We need to find the final velocity of the car. Let it is given by v. It can be calculated using first equation of motion as :

v = 24.49 m/s
So, the final speed of the car is 24.49 m/s. Hence, this is the required solution.
Ocean currents<span> act much like a conveyer belt, transporting warm water and precipitation from the equator toward the poles and cold water from the poles back to the tropics. Therefore, </span>currents<span> regulate global </span>climate<span>, helping to counteract the uneven distribution of solar radiation reaching Earth's </span>surface<span>.</span>
Step 1 : Get your supply list together
Step 2 : Pick what model you want to do
Step 3 : Ask for a partner
Step 4 : Complete the model and take your time.
Step 5 : Read the directions carefully