Answer:
Reflection involves a change in direction of waves when they bounce off a barrier. Refraction of waves involves a change in the direction of waves as they pass from one medium to another.
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>
Answer: Inertia!!
Explanation: I just completed the edg quiz and got that answer correct! Hope its not too late for you!
I would tell him, in the kindest, most gentle way I could manage,
to fahgeddaboudit.
The total amount of energy doesn't change. Energy is never created,
and it never disappears. If you have some energy, then it had to come
from somewhere, and if you used some energy, then it had to go
somewhere.
You can never get more energy out of the electromotor than you put into it,
and in the real world, you can't even get THAT much out, because some
of it is always used on the way through.
Pour yourself a cold glass of soda, then look up "Perpetual Motion" or
"Free Energy" on the internet, relax, and enjoy the show. They are all
fakes. They may not all be intentionally meant to fool you, but they are
all impossible.
The temperature difference of 1 K is equivalent to the temperature difference of 1 °C. Therefore, we find the relationship between the change in °F and °C.
A change of 212 - 32 °F is the same as a change of 100 - 0 °C. Thus:
(212 - 32) °F = (100 - 0) °C
1 °C = 1.8 °F
1 K = 1.8 °F