1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
4 years ago
15

Place the steps of the scientific method in correct order.

Physics
1 answer:
tino4ka555 [31]4 years ago
4 0
Step 1- Question. The "thing" that you want to know. The question you want to answer.
Step 2-Research. Conduct research. Information about the problem. ...
Step 3-Hypothesis.
Step 4-Experiment. Test the hypothesis.
Step 5-Observations.
Step 6-Results/Conclusion.
You might be interested in
Salmon often jump waterfalls to reach their
PilotLPTM [1.2K]

The minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.

The given parameters;

  • height of the waterfall, h = 0.432 m
  • distance of the Salmon from the waterfall, s = 3.17 m
  • angle of projection of the Salmon, = 30.8º

The time of motion to fall from 0.432 m is calculated as;

h = v_0_y + \frac{1}{2} gt^2\\\\0.432 = 0 + (0.5\times 9.8)t^2\\\\0.432 = 4.9t^2\\\\t^2 = \frac{0.432}{4.9} \\\\t^2 = 0.088\\\\t = \sqrt{0.088} \\\\t = 0.3 \ s

The minimum velocity of the Salmon jumping at the given angle is calculated as;

X = v_0_x t\\\\3.17 = (v_0\times cos(30.8)) \times 0.3\\\\10.567 = v_0\times cos(30.8)\\\\v_0 = \frac{10.567}{cos(30.8)} \\\\v_0 = 12.3 \ m/s

Thus, the minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.

Learn more here: brainly.com/question/20064545

8 0
2 years ago
A block (mass = 61.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1/2MR2 kg · m2, wh
kolezko [41]

Answer:

The angular velocity is  w = 53.35 \ rounds /minute

Explanation:

From the question we are told that

    The mass of the block is  m = 61.2kg

     The of the pulley is  M = 14.2 kg

      The radius of the pulley is  R = 1.5m

       The radius  of the cord around the pulley is  r = 1.5 m

       The distance of the block to the floor is  d = 8.0 m

         

From the question we are told that the moment of inertia of the pulley is

          I  = \frac{1}{2} MR^2 kg \cdot m^2

Substituting value  

         I = \frac{1}{2}  * 14.2 * (1.5)^2

         I = 15.975 kg \cdot m^2

Using the Newtons law we can express the force acting on the vertical axis as

              ma = mg -T

         =>  T = mg -ma

Now when the pulley is rotated that  torque generated on the massless cord as a r result of the tension T and the radius of the cord around the pulley is mathematically represented as

                  \tau = I \alpha

     Here \alpha is the angular acceleration

           Here \tau is the torque which can be equivalent to

              \tau = T r

  Substituting this above

            Tr = I \alpha      

Substituting for T

         (mg - ma ) r =  I\  r \alpha

Here a is the  linear acceleration which is mathematically represented as

           a = r\alpha

    (mg - m(r\alpha ) ) r =  I\  r \alpha

     mgr = I\alpha  + m(r\alpha ) r

    mgr = \alpha  [ I + mr^2]

   making \alpha the subject

          \alpha  = \frac{mgr}{I -mr ^2}          

   Substituting values

            \alpha  = \frac{61.2 * 1.5 * 9.8}{15.975 + (61.2 ) * (1.5)^2}

             \alpha =5.854 rad /s^2

Now substituting into the equation above to obtain the acceleration

             a = 5.854 * 1.5

                a=8.78 m/s^2

This acceleration is a = \frac{v}{t}

and v is the linear velocity with is mathematically represented as

         v = \frac{d}{t}

Substituting this into the formula acceleration

        a = \frac{d}{t^2}

making t the subject

         t = \sqrt{\frac{d}{a} }

substituting value

      t = \sqrt{\frac{8}{8.78}}

     t = 0.9545 \ s

Now the linear velocity is

       v = \frac{8}{0.9545}

       v = 8.38 m/s

The angular velocity is  

       w = \frac{v}{r}

So

       w = \frac{8.38}{1.5}

        w = 5.59 rad/s

Generally 1 radian is equal to  0.159155 rounds or turns

        So  5.59 radian is  equal to x

Now x is mathematically obtained as

         x = \frac{5.59 * 0.159155}{1}

            = 0.8892 \ rounds

 Also

      60  second =  1 minute

So   1 second  = z      

Now z is mathematically obtained as

         z = \frac{ 1}{60}

            z = 0.01667 \ minute

Therefore

              w = \frac{0.8892}{0.01667}

              w = 53.35 \ rounds /minute

           

8 0
3 years ago
For which length of wire are the readings of resistance the most precise
levacccp [35]
The resistance of a wire is directly proportional to the length of the wire. That is the longer the length of the wire, the higher the resistance and the shorter the length of the wire, the smaller the resistance.
7 0
3 years ago
A 60-W light bulb radiates electromagnetic waves uniformly in all directions. At a distance of 1.0 mm from the bulb, the light i
slega [8]

Answer:

The appropriate solution is:

(a) \frac{1}{4}(I_o)

(b) \frac{1}{4} (u_o)

(c) \frac{1}{2}B_o

Explanation:

According to the question, the value is:

Power of bulb,

= 60 W

Distance,

= 1.0 mm

Now,

(a)

⇒  \frac{I}{I_o} =\frac{r_o_2}{r_2}

On applying cross-multiplication, we get

⇒  I=I_o\times \frac{1_2}{2^2}

⇒     =I_o\times \frac{1}{4}

⇒     =\frac{1}{4} (I_o)

(b)

As we know,

⇒ \frac{u}{u_o} =\frac{I}{I_o}

By putting the values, we get

⇒ u=\frac{1}{4}(u_o)

(c)

⇒ \frac{B^2}{B_o^2} =\frac{u}{u_o}

         =\frac{I}{I_o}

⇒ B=B_o\times \sqrt{\frac{1}{4} }

⇒     =\frac{1}{2}(B_o)

4 0
3 years ago
Type the correct answer in the box. What is the resistance of a circuit with a voltage of 10 volts (V) and a current of 5 amps (
harkovskaia [24]

Resistance = Voltage/Current

                   = 10/5

Resistance = 2 ohms

4 0
3 years ago
Read 2 more answers
Other questions:
  • Because angular momentum is conserved, an ice-skater who throws her arms out will
    15·1 answer
  • Which best explains why scientific theories grow stronger over time?
    7·1 answer
  • If you are the driver or owner of a vehicle which is in a crash that is your fault, and you are not insured in compliance with t
    11·1 answer
  • A 500N person stands 2.5m from a wall against which a horizontal beam is attached. The beam is 6m long and weighs 200N. A cable
    12·1 answer
  • Which of the following is true of all minerals?
    13·2 answers
  • Which career is most concerned with the study of radioactive isotopes?
    5·1 answer
  • Would you be doing more work by going up the stairs twice as fast?
    9·2 answers
  • Which statement best reflects the approach of Gestalt psychology?
    6·2 answers
  • The energy from light is used by plants to oxidize which molecule?
    8·1 answer
  • A student pushes a chair into a desk. If the student's push is the action force, then what is the reaction force in this example
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!