Answer:
The number of crates is 84580.
Explanation:
mass, m = 30 kg
height, h = 0.9 mm
Power, P = 0.5 hp = 0.5 x 746 W = 373 W
time, t = 1 minute = 60 s
Let the number of crates is n.
Power is given by the rate of doing work.

The players acceleration is 3.33 m/s/s
Acceleration= Velocity/Time
A =10/3
Resistance = (voltage) / (current)
Resistance = (120 V) / (0.5 A)
<em>Resistance = 240 ohms</em>
<em></em>
Know what ? There might be too much information given in this question. I want to check, because it's possible that it might not even all fit together.
To calculate my answer, I only used the voltage and the current. I didn't use the "60 watts", and I'm curious to know whether it even fits with the given voltage and current.
Power = (voltage) times (current).
Power = (120 V) times (0.5 A)
Power = 60 watts
Well gadzooks and sure enough ! The three numbers given in the question all go together nicely.
And not only THAT !
The answer could have been calculated by using ANY TWO of them.
Answer:
t₁ = 3 s
Explanation:
In this exercise, the vertical displacement equation is not given
y = 240 t + 16 t²
Where y is the displacement, 240 is the initial velocity and 16 is half the value of the acceleration
Let's replace
864 = 240 t + 16 t²
Let's solve the second degree equation
16 t² + 240 t - 864 = 0
Let's divide by 16
t² + 15 t - 54 = 0
The solution of this equation is
t = [-15 ± √(15 2 - 4 1 (-54)) ] / 2 1
t = [-15 ±√(225 +216)] / 2
t = [-15 + - 21] / 2
We have two solutions.
t₁ = [-15 +21] / 2
t₁ = 3 s
t₂ = -18 s
Since time cannot have negative values, the correct t₁ = 3s
Water because the light is able to enter the water and allow heat to enter faster.