Take 68.2/60 = 1.137 hr
take 56.9/1.137 = 50.043 mi/hr
take 189/211 = 0.896
24.8/2 = 12.4 m
12.4/82.3 = 0.15s
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
While bucket is falling downwards we have force equation of the bucket given as

for uniform cylinder we will have

so we have


now we have




now we have


Part b)
speed of the bucket can be found using kinematics
so we have



Part c)
now in order to find the time of fall we can use another equation



Part d)
as we know that cylinder is at rest and not moving downwards
so here we can use force balance



The term that best describes how many waves that pass? It's frequency because how many waves are passed by a given point or time is called the waves frequency. I hope this helped you out on your assignment.
Horizontal component = (10N) · sin (20°) = 3.42... N (rounded)
Vertical component = (10N) · cos (20°) = 9.39... N (rounded)
Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.