1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
3 years ago
5

The magnitude of the magnetic field at a certain distance from a long, straight conductor is represented by B. What is the magni

tude of the magnetic field at twice the distance from the conductor
Physics
1 answer:
masya89 [10]3 years ago
8 0

Answer:

  B/4

Explanation:

The magnetic field strength is inversely proportional to the square of the distance from the current. At double the distance, the strength will be 1/2^2 = 1/4 of that at the original distance:

The field at twice the distance is B/4.

You might be interested in
Mercury was named after the roman god of speed why is it an appropriate name for the planet
elena-14-01-66 [18.8K]
Because it's the planet in our solar system with the shortest,
fastest orbit around the sun ... only 88 Earth days.

The people who named it didn't know that ... they still thought that
the sun and all the planets revolve around the Earth.  But they did
see it zip from one side of the sun to the other, faster than any other
planet ... the result of having the shortest, fastest orbit of any planet.
5 0
4 years ago
A satellite orbits earth with a mean altitude of 361 km. If the orbit is circular, what are the satellite's time period and spee
Advocard [28]

Answer:

v = 7.69 x 10³ m/s = 7690 m/s

T = 5500 s = 91.67 min = 1.53 h

Explanation:

In order for the satellite to orbit the earth, the force of gravitation on satellite must be equal to the centripetal force acting on it:

F_{gravitation}= F_{centripetal}\\\\\frac{GM_{s} M_{E}}{r^2}  = \frac{M_{s} v^2}{r}\\\\\frac{GM_{E}}{r} = v^2\\\\v = \sqrt{\frac{GM_{E}}{r} } \\\\

where,

G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²

Me = Mass of Earth = 5.97 x 10²⁴ kg

r = distance between the center of Earth and Satellite = Radius of Earth + Altitude = 6.371 x 10⁶ m + 0.361 x 10⁶ m = 6.732 x 10⁶ m

v = orbital speed = ?

Therefore,

v = \sqrt{\frac{(6.67 x 10^{-11}N.m^2/kg^2)(5.97 x 10^{24} kg)}{6.732 x 10^6 m} }\\\\

<u>v = 7.69 x 10³ m/s</u>

For time period satellite completes one revolution around the earth. It means that the distance covered by satellite is equal to circumference of circle at the given altitude.

So, its orbital speed can be given as:

v = \frac{Circumference of Circle at Given Altitude}{T}\\\\v =  \frac{2\pi r}{T}\\\\

where,

T = Time Period of Satellite = ?

Therefore,

T = \frac{2\pi r}{v}\\\\T = \frac{(2\pi )(6.732 x 10^6 m}{7.69 x 10^3 m/s}\\\\

<u>T = 5500 s = 91.67 min = 1.53 h</u>

7 0
3 years ago
What type of motion is shown with this graph? (5 points)
Vladimir [108]
It should be Constant speed. The line goes straight & doesn’t change within the graph.
7 0
3 years ago
A square wave has amplitude 0 V for the low voltage and 4 V for the high voltage. Calculate the average voltage by integrating o
Margarita [4]

Answer:

V_{average} = \frac{1}{2}  V_o  ,     V_{average} = 2 V

Explanation:

he average or effective voltage of a wave is the value of the wave in a period

            V_average = ∫ V dt

in this case the given volage is a square wave that can be described by the function

           V (t) = \left \{ {{V=V_o \ \ \  t<  \tau /2} \atop {V=0 \ \  \ \  t> \tau /2 }   } \right.

to substitute in the equation let us separate the into two pairs

             V_average = \int\limits^{1/2}_0 {V_o} \, dt + \int\limits^1_{1/2} {0} \, dt

             V_average = V_o \ \int\limits^{1/2}_0 {} \, dt

             V_{average} = \frac{1}{2}  V_o

we evaluate  V₀ = 4 V

             V_{average} = 4 / 2)

             V_{average} = 2 V

6 0
3 years ago
Choose what colors are absorbed when white light hits a red apple. (Pick all that apply.)
astra-53 [7]
A red apple absorbs all colors of visible light except red, so red light
is the only light left to bounce off of the apple toward our eyes. 
(This is a big part of the reason that we call it a "red" apple.)

Here's how the various items on the list make out when they hit the apple:

<span>Red . . . . . reflected
Orange . . absorbed
Yellow . . . </span><span><span>absorbed
</span>Green . </span><span><span>. . absorbed
</span>Blue . . </span><span><span>. . absorbed
</span>Violet .</span><span> . . absorbed</span>
<span>Black . . . no light; not a color
White . . . has all colors in it</span>

4 0
3 years ago
Other questions:
  • Astronomers have no theoretical explanation for the ""hot Jupiters"" observed orbiting some other stars. (T/F)
    13·1 answer
  • Which candidate won an election that was ultimately decided by the supreme court
    15·1 answer
  • With a force of 5 Newton's Amanda pushes the stacks of books to the right. At the same time Jeremih her little brother pushes th
    5·2 answers
  • A slingshot fires a pebble from the top of a building at a speed of 14.7 m/s. The building is 36.0 m tall. Ignoring air resistan
    9·1 answer
  • What is the kinetic energy of a 400kg house that is racing around a track at 17 meters per second?
    14·1 answer
  • Air at 1.3 bar, 500 K and a velocity of 40 m/s enters a nozzle operating at steady state and expands adiabatically to the exit,
    6·1 answer
  • Explain how refraction and prisms work.
    14·1 answer
  • Please help me with this question
    10·1 answer
  • An object undergoing simple harmonic motion takes 0.40 s to travel from one point of zero velocity to the next such point. The d
    14·1 answer
  • QUICK: A circular loop of radius r is rotated through a magnetic field B, which of the following would increase the magnetic flu
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!