Answer:
Negative
Explanation:
Observe that the object below moves in the positive direction with a changing velocity. An object which moves in the positive direction has a positive velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a negative acceleration).
Answer:
(A) 7.9 m/s^{2}
(B) 19 m/s
(C) 91 m
Explanation:
initial velocity (U) = 0 mph = 0 m/s
final velocity (V) = 85 mph = 85 x 0.447 = 38 m/s
initial time (ti) = 0 s
final time (t) = 4.8 s
(A) acceleration = 
=
= 7.9 m/s^{2}
(B) average velocity = 
=
= 19 m/s
(C) distance travelled (S) = ut + 
= (0 x 4.8) +
= 91 m
Answer:
1.25 focal lengths
Explanation:
The lens equation states that:

where
f is the focal length
p is the object distance
q is the image distance
In this problem, the image is 4 times as far from the lens as is the object: this means that

If we substitute this into the lens equation and we rearrange it, we get

so, the object distance measured in focal lengths is
1.25 focal lenghts
Answer:
to be honest I'm not sure
Zero latitude gets the most direct sun all year around. That's the equator.
The picture you attached has nothing to do with this question.