Answer:
388.97 nm
Explanation:
The computation of the wavelength of this light in benzene is shown below:
As we know that
n (water) = 1.333
n (benzene) = 1.501

And, the wavelength of water is 438 nm
![\lambda (benzene) = \lambda (water) [\frac{n(water)}{n(benzene}]](https://tex.z-dn.net/?f=%5Clambda%20%28benzene%29%20%3D%20%5Clambda%20%28water%29%20%5B%5Cfrac%7Bn%28water%29%7D%7Bn%28benzene%7D%5D)
Now placing these values to the above formula
So,

= 388.97 nm
We simply applied the above formula so that we can easily determine the wavelength of this light in benzene could come
Answer:
The bus
Explanation:
a = (v-u)/t
Where
a = acceleration
v = final velocity
u = initial velocity
t = time taken
For truck to get its acceleration,
a = (18-0)/5.5 = 3.27 ms⁻²
For bus to get its acceleration,
a = (24-0)/6 = 4 ms⁻²
As 4 > 3.27 bus has a greater acceleration.
B: Extension Lines! You could have just searched this up on google
D,f,g,h,i,a,e,c,j. I’m sure that it
Wavelength = (speed) / (frequency)
Speed of radio = speed of light.