Answer:
a) E = 2.00 10³ J
, b) I = 6.66 10⁻⁶ N s
, c) F = 1.66 10⁻⁶ N
Explanation:
a) The intensity is defined as the power per unit area
I = P / A
P = I A
Power is energy for time
P = E / t
We replace
E / t = I A
E = I A t
E = 1.0 10³ 2.0 1.00
E = 2.00 10³ J
b) The moment is
p = U / c
In the case of a reflection the speed is reversed, so the moment
Δp = 2 U / c
I = Δp
I = 2 U / c
I = 2.00 10³/3 10⁸
I = 6.66 10⁻⁶ N s
c) The defined impulse is
I = F t
F = I / t
For a time of 1 s
F = 6.66 10⁻⁶ / 1
F = 1.66 10⁻⁶ N
d) Suppose n small mass mirror m = 10 10⁻³ kg, we write Newton's second law
F = ma
a = F / m
a = 1.66 10⁻⁶ / 10 10⁻³
a = 1.66 10⁻⁴ m / s
We see that the acceleration is very small and attended to increase the mass of the mirror will be less and less, so the assumption of no twisting of the mirror is very reasonable
Insulators are the poorest conductor of energy
2
For the one I can do to make it to get my stuff ready for my
A distance-versus-time graph for the moving object would curve upward for acceleration and curve downward for deceleration
Answer:
Explanation: The question seems incomplete. Check it well