Answer:
Final concentrations:
Cu²⁺ = 0
Al³⁺ = 3.13 mmol/L = 84.51 mg/L
Cu = 4.7 mmol/L = 300 mg/L
Al = 0.57 mmol/L = 15.49 mg/L
Explanation:
2Al (s) + 3Cu²⁺ (aq) → 2Al³⁺ (aq) + 3Cu (s)
Al: 27 g/mol ∴ 100 mg = 3.7 mmol
Cu: 63.5 g/mol ∴ 300 mg = 4.7 mmol
3 mol Cu²⁺ _______ 2 mol Al
4.7 mmol Cu²⁺ _____ x
x = 3.13 mmol Al
4.7 mmol of Cu²⁺ will be consumed.
3.13 mmol of Al will be consumed.
4.7 mmol of Cu will be produced.
3.13 mmol of Al³⁺ will be produced.
0.57 mmol of Al will remain.
The formula for molality---> m = moles solute/ Kg of solvent
the solute here is NH₃ because it's the one with less amount. which makes water the solvent.
1) let's convert the grams of NH₃ to moles using the molar mass
molar mass of NH₃= 14.0 + (3 x 1.01)= 17.03 g/ mol
15.0 g (1 mol/ 17.03 g)= 0.881 mol NH₃
2) let's convert the grams of water into kilograms (just divide by 1000)
250.0 g= 0.2500 kg
3) let's plug in the values into the molality formula
molality= mol/ Kg---> 0.881 mol/ 0.2500 kg= 3.52 m
When the amount of gas in a container is increased, the volume increases. Lussac's law states that the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
Answer:
105.8 g of Na would be required
Explanation:
Let's think the reaction:
2Na(s) + Cl₂(g) → 2NaCl (s)
1 mol of chlorine reacts with 2 moles of sodium
Then, 2.3 moles of Cl₂ would react with (2.3 .2) / 1 = 4.6 moles
Let's determine the mass of them.
4.6 mol . 23 g/mol = 105.8 g
Hello,
Here is your answer:
The proper answer to this question is option D "<span>sodium hydroxide".
Here is how:
Sodium Hydroxide its a white substance that is a </span><span>electrolyte.
Your answer is D.
If you need anymore help feel free to ask me!
Hope this helps!</span>