Answer:
<em>The force that would be applied on the rope just to start moving the wagon is 122 N</em>
Explanation:
Frictional force opposes motion between two surfaces in contact. It is the force that must be applied before a body starts to move. Static friction opposes the motion of two bodies that are in contact but are not moving. The magnitude of static friction to overcome for the body to move can be calculated using equation 1.
F = μ x mg .............................. 1
where F is the frictional force;
μ is the coefficient of friction ( μs, in this case, static friction);
m is mass of the object and;
g is the acceleration due to gravity( a constant equal to 9.81 m/
)
from the equation we are provide with;
μs = 0.25
m = 50 kg
g = 9.81 m/
F =?
Using equation 1
F = 0.25 x 50 kg x 9.81 m/
F = 122.63 N
<em>Therefore a force of 122 N must be applied to the rope just to start the wagon.</em>
Answer:
30 minutes
Explanation:
Energy per time is constant, so:
E₁ / t₁ = E₂ / t₂
m₁C₁ΔT₁ / t₁ = m₂C₂ΔT₂ / t₂
(1 kg) C (70°C − 25°C) / 15 min = (1.5 kg) C (80°C − 20°C) / t
(1 kg) (45°C) / 15 min = (1.5 kg) (60°C) / t
3/min = 90 / t
t = 30 min
Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.
Answer:
splashing
Explanation:
if you put in the cereal after the milk it will splash everywhere, causing a waste of milk, and a loss of time.