The enthalpy change : -196.2 kJ/mol
<h3>Further explanation </h3>
The change in enthalpy in the formation of 1 mole of the elements is called enthalpy of formation
The enthalpy of formation measured in standard conditions (25 ° C, 1 atm) is called the standard enthalpy of formation (ΔHf °)
(ΔH) can be positive (endothermic = requires heat) or negative (exothermic = releasing heat)
The value of ° H ° can be calculated from the change in enthalpy of standard formation:
∆H ° rxn = ∑n ∆Hf ° (product) - ∑n ∆Hf ° (reactants)
Reaction
2 H₂O₂(l)-→ 2 H₂O(l) + O₂(g)
∆H ° rxn = 2. ∆Hf ° H₂O - 2. ∆Hf °H₂O₂

Answer:
HgO (empirical formula)
Explanation:
4.08 - 3.78 = 0.3g (oxygen)

0.02 : 0.02
0.02/0.02 : 0.02/0.02
1 : 1 (ratio)
HgO ( empirical formula)
2HgO ----> 2Hg + O2 ( your equation correct)
Answer:
K8S4O16 or K8(SO4)4 depending on if the SO4 is supposed to represent sulfate or not
Explanation:
Find the molar mass of K2SO4 first:
2K + S + 4O ≈ 174 g/mol
Divide the goal molar mass of 696 by the molar mass of the empirical formula:
696 / 174 = 4
This means you need to multiply everything in the empirical formula by 4:
K2SO4 --> K8S4O16 or K8(SO4)4 depending on if the SO4 is for sulfate or not
Answer:The law of conservation of matter says that matter cannot be created or destroyed. In chemical equations, the number of atoms of each element in the reactants must be the same as the number of atoms of each element in the products. ... There are two oxygen atoms in the reactants and two atoms of oxygen in the product.
Explanation: