Answer:
The enthalpy change for the given reaction is 424 kJ.
Explanation:

We have :
Enthalpy changes of formation of following s:



(standard state)
![\Delta H_{rxn}=\sum [\Delta H_f(product)]-\sum [\Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5B%5CDelta%20H_f%28product%29%5D-%5Csum%20%5B%5CDelta%20H_f%28reactant%29%5D)
The equation for the enthalpy change of the given reaction is:
=

=


The enthalpy change for the given reaction is 424 kJ.
answer: -230kJ
When in doubt, use the google conversations! :)
The answer is b, least to greatest motion.
The higher the temperature a substance is, their particles have more kinetic energy and thus move faster and have a faster motion.
From the pictures, we can see that the state changes from the coldest, ice, to the least cold, water, and to the hottest, steam. Therefore, the hotter the substance it, the water molecules have a greater motion.
So your answer is b.
Answer:
1.70 g.cm⁻³
Solution:
Data Given;
Mass = 84.7 g
Volume = 49.6 cm³
Density = ?
Formula Used;
Density = Mass ÷ Volume
Putting values,
Density = 84.7 g ÷ 49.6 cm³
Density = 1.70 g.cm⁻³
Answer:
A - NaCl is a product
D - Cl2 is a gas
Explanation:
Based on the chemical reaction;
2Na(s) + Cl2(g) → 2NaCl2
- Sodium metal reacts with chlorine gas to form sodium chloride. Sodium is in solid state, chlorine is in gaseous state and Sodium chloride is in solid state.
- In the chemical reaction, sodium and chlorine are reactants while sodium chloride is the product.
- Additionally the chemical reaction above is balanced so as to obey the law of conservation of mass.