Answer: Larmor suggested in 1919 that a self-exciting dynamo could explain the magnetic field of the earth, as well as that of the sun and other stars, but it was Elsasser and Bullard in the 1940s who showed how motion in the liquid core of the earth might produce a self-sustaining magnetic field. By this time seismology and other studies had given a clearer picture of the earth, as having a solid inner core, a liquid outer core, both with a composition more of metal (mainly iron) than rock, and a rocky mantle, all below a thin crust that is all we can directly see. Energy from radioactivity travels outwards as heat, producing thermal convection in the core. It seems that this convection is the cause of the earth's magnetic field, although our knowledge of the core and its dynamics is sketchy. Our knowledge is limited to saying that flow regimes like those that may be occurring in the core can produce self-sustaining dynamos, with characteristics similar to that needed to produce the earth’s magnetic field.
Explanation:
Answer
given,
watermelon blown into three pieces
two pieces of mass m
both pieces speed = v = 31 m/s
mass of third piece = 3 m
using conservation of mass




velocity of third component


angle



Answer:
The answer is CD, just had the same question myself.
Answer:
1.29 N
Explanation:
The equation for force (with work and distance) is:

We can plug in the given values into the equation:

Answer:
Where is kinetic energy the least?, and most?
Explanation:
Least : When the Moon is farthest from Earth in its nearly elliptical orbit, its speed is least. Its kinetic energy has become least, and its potential energy is greatest.
Further : Kinetic energy, form of energy that an object or a particle has by reason of its motion. If work, which transfers energy, is done on an object by applying a net force, the object speeds up and thereby gains kinetic energy.
May be different for you, but i really hope I helped out.