Explanation:
The given data is as follows.
k = 130 N/m,
= 17 cm = 0.17 m (as 1 m = 100 cm)
mass (m) = 2.8 kg
When the spring is compressed then energy stored in it is as follows.
Energy = 
Now, spring energy gets converted into kinetic energy when the box is launched.
So,
= 
= 

= 1.34
v = 1.15 m/sec
Now,
Frictional force = 
= 
= 4.116 N
Also, Kinetic energy = work done by friction
1.8515 =
d = 0.449 m
Thus, we can conclude that the box slides 0.449 m across the rough surface before stopping.
Henry will lift 200 N load 20 m up a ladder in 40 s. While the Ricardo will take 400 N load in 80 seconds. So, For Henry to take 400 N load it will take him 80 seconds in two attempts. And,also, he will have to cover 40 m of distance.
Answer:
d = V/E
Explanation:
From the definition, we can say that the electric field strength between the plates of a parallel plate capacitor is
E = v/d
where
E = electric field strength
V = potential difference
d = distance between the plates
On rearranging the equation and making d subject of the formula, we have
d = V/E
From the question, we're given that
V = 112 V
E = 1.12 kV/cm converting to V/m, we have 110000 V/cm
d = 112 / 110000
d = 0.00102 m
d = 1.02*10^-3 m
The correct answer is the reverse wave I took the test
Answer:
2.7
Explanation:
The following data were obtained from the question:
Mass (m) of box = 100 Kg
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
Mechanical advantage of a ramp is simply defined as the ratio of the length of the ramp to the height of the ramp. Mathematically, it is given by:
Mechanical Advantage = Lenght / height
MA= L/H
With the above formula, we can obtain the mechanical advantage of the ramp as follow:
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
MA = 4/1.5
MA = 2.7
Therefore, the mechanical advantage of the ramp is 2.7