Answer:
The correct answer is the imperial system.
Explanation:
Only three countries in the world, that is, the United States, Myanmar, and Liberia use the imperial system. These include measurements in the form of inches, ounces, Fahrenheit, and feet. In the imperial system, the distances, height, weight, or area measurements are used eventually that traced back to everyday items or parts of the body.
In comparison to other metric systems, the units used in the imperial system are not further differentiated easily into parts of hundreds or thousands, and are thus, regarded of less use in comparison to other metric systems by some. The real follower of the imperial system at present in the world is the United States.
<span>it is located directly under the sima</span>
2Fe + 3Cl₂ ---> 2FeCl₃
4.4mol of Fe, you have a 2:3 ratio of Fe to Cl₂ so divide 4.4/2 = 2.2 and multiply by three 2.2 x 3 = 6.6mol of Cl₂
hope that helps :)
Answer:
1.7 bar
Explanation:
We can use the <em>Ideal Gas Law</em> to calculate the individual gas pressure.
pV = nRT Divide both sides by V
p = (nRT)/V
Data: n = 1.7 × 10⁶ mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 22 °C
V = 2.5 × 10⁷ L
Calculations:
(a) <em>Change the temperature to kelvins
</em>
T = (22 + 273.15) K
= 295.15 K
(b) Calculate the pressure
p = (1.7 × 10⁶ × 0.083 14 × 295.15)/(2.5× 10⁷)
= 1.7 bar
Answer:
Considering the half-life of 10,000 years, after 20,000 years we will have a fourth of the remaining amount.
Explanation:
The half-time is the time a radioisotope takes to decay and lose half of its mass. Therefore, we can make the following scheme to know the amount remaining after a period of time:
Time_________________ Amount
t=0_____________________x
t=10,000 years____________x/2
t=20,000 years___________x/4
During the first 10,000 years the radioisotope lost half of its mass. After 10,000 years more (which means 2 half-lives), the remaining amount also lost half of its mass. Therefore, after 20,000 years, the we will have a fourth of the initial amount.