Answer: (23.53, 25.47)
Step-by-step explanation:
The confidence interval for population mean(when population standard deviation is unknown) is given by :-
![\overline{x} \pm\ t^*\dfrac{s}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%20%5Cpm%5C%20t%5E%2A%5Cdfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D)
, where
= sample mean
n = sample size.
s = sample standard deviation.
t* = Critical value.
Given :
s= 4.4
Confidence level = 90% =0.090
Significance level = ![\alpha=1-0.90=0.10](https://tex.z-dn.net/?f=%5Calpha%3D1-0.90%3D0.10)
Sample size : n= 58
Degree of freedom : df= n-1= 57
Using t-distribution table , the critical value :
![t_{\alpha/2,\ df}= t_{0.05,\ 57}=1.6720](https://tex.z-dn.net/?f=t_%7B%5Calpha%2F2%2C%5C%20df%7D%3D%20t_%7B0.05%2C%5C%2057%7D%3D1.6720)
Then, the confidence interval will be :-
![24.5 \pm\ (1.6720)\dfrac{4.4}{\sqrt{58}}](https://tex.z-dn.net/?f=24.5%20%5Cpm%5C%20%281.6720%29%5Cdfrac%7B4.4%7D%7B%5Csqrt%7B58%7D%7D)
![24.5 \pm\ (1.6720)\dfrac{4.4}{7.61577310586}](https://tex.z-dn.net/?f=24.5%20%5Cpm%5C%20%281.6720%29%5Cdfrac%7B4.4%7D%7B7.61577310586%7D)
![24.5 \pm\ 0.965995165263\approx24.5\pm0.97\\\\=(24.5-0.97,\ 24.5+0.97)\\\\=(23.53,\ 25.47)](https://tex.z-dn.net/?f=24.5%20%5Cpm%5C%200.965995165263%5Capprox24.5%5Cpm0.97%5C%5C%5C%5C%3D%2824.5-0.97%2C%5C%2024.5%2B0.97%29%5C%5C%5C%5C%3D%2823.53%2C%5C%2025.47%29)
Hence, a 90% confidence interval for the population mean = (23.53, 25.47)