Answer:
polyatomic ions are ions they are composed of two range
1 binary ionic compounds nomenclature of ionic and contrbuture 2.brainly components between two nominees
The correct answer is C.
Most of the time, double replacements produce one product that is soluble and one that is insoluble
This results in a precipitate within a liquid or aqueous solution
Hope this helps
<span>When a chemist mixes oxygen gas and hydrogen gas to form
water, which is composed of one oxygen and two hydrogen atoms per molecule. The hydrogen and oxygen atoms bounds together by making a bond called covalent bond.<span> In a covalent bond, two atoms are bound
together because they each want to "share" each other's electrons.</span></span>
Answer:
P=atm

Explanation:
The problem give you the Van Der Waals equation:

First we are going to solve for P:


Then you should know all the units of each term of the equation, that is:







where atm=atmosphere, L=litters, K=kelvin
Now, you should replace the units in the equation for each value:

Then you should multiply and eliminate the same units which they are dividing each other (Please see the photo below), so you have:

Then operate the fraction subtraction:
P=

And finally you can find the answer:
P=atm
Now solving for b:




Replacing units:

Multiplying and dividing units,(please see the second photo below), we have:


