The pressure exerted by each individual gas in a mixture of gases is called its <u>partial </u>pressure this pressure is proportional to the <u>mole</u> fraction of the gas in the mixture
Pressure is defined as the force of all the gas particle of wall collisions divided by the area of the wall
The pressure exerted by an individual gas in a mixture is known as its partial pressure and assuming we have a mixture of ideal gases and we can use the ideal gas law to solve problems involving gases in a mixture and the ratio of the number of moles of one component of a solution or other mixture to the total number of moles representing all of the components
Know more about pressure
brainly.com/question/16118479
#SPJ1
hi im breanna
Answer:
The mole is simply a very large number that is used by chemists as a unit of measurement.
Explanation:
The mole is simply a very large number,
6.022
×
10
23
, that has a special property. If I have
6.022
×
10
23
hydrogen atoms, I have a mass of 1 gram of hydrogen atoms . If I have
6.022
×
10
23
H
2
molecules, I have a mass of 2 gram of hydrogen molecules. If I have
6.022
×
10
23
C
atoms, I have (approximately!) 12 grams.
The mole is thus the link between the micro world of atoms and molecules, and the macro world of grams and litres, the which we can easily measure by mass or volume. The masses for a mole of each element are given on the periodic table as the atomic weight. So, if have 12 g of
C
, I know, fairly precisely, how many atoms of carbon I have. Given this quantity, I know how many molecules of
O
2
are required to react with the
C
, which I could measure by mass or by volume.
The electron configuration of lithium atom is:
![Li:[He]2s^1](https://tex.z-dn.net/?f=Li%3A%5BHe%5D2s%5E1)
The number "2" is the value of the principal quantum number "n". Letter "s" is associated with the value of secondary quantum number "l" and it is equal to zero. The value of "m" (or magnetic quantum number) is zero too. The quantum number set for the highest energy electron will be (2, 0, 0, 1/2).
<h3>
Answer:</h3>
0.424 J/g °C
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in Joules)
- m is mass (in grams)
- c is specific heat (in J/g °C)
- ΔT is change in temperature
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] m = 38.8 g
[Given] q = 181 J
[Given] ΔT = 36.0 °C - 25.0 °C = 11.0 °C
[Solve] c
<u>Step 2: Solve for Specific Heat</u>
- Substitute in variables [Specific Heat Formula]: 181 J = (38.8 g)c(11.0 °C)
- Multiply: 181 J = (426.8 g °C)c
- [Division Property of Equality] Isolate <em>c</em>: 0.424086 J/g °C = c
- Rewrite: c = 0.424086 J/g °C
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.424086 J/g °C ≈ 0.424 J/g °C