Answer:
Explanation:
Firstly, we have to determine the mass of metal X. We can do that by interpreting the first and second statement mathematically.
Metal X can form 2 oxides (A and B).
A + B = 3g
The mass of oxygen in A is 0.72g and the mass of oxygen in B is 1.16g.
The mass of metal X in the two oxides will be the same because it's the same metal.
Thus, we represent the mass of the metal in the two oxides as 2X.
2X + 0.72 + 1.16 = 3
2X + 1.88 = 3
2X = 3 - 1.88
2X = 1.12
X = 0.56
<u>Thus, 0.56 g of the metal combines with 0.72g of oxygen in A and 1.16 g of oxygen in B.</u>
Thus, mass of metal (X) in 1g of oxygen in A is
0.56g ⇒ 0.72g
X ⇒ 1
X = 1 × 0.56/0.72
X = 0.78 g
Hence, 0.78g of the metal will combine with 1g of oxygen for A
Also, mass of metal (X) in 1g of oxygen in B is
0.56g ⇒ 1.16g
X ⇒ 1g
X = 1×0.56/1.16
X = 0.48 g
Thus, 0.48g of the metal will combine with 1g of oxygen for B
1) Find the number of mols of HCl in 5.2 liters of 4.0M solution:
n = M*V(L) = 4.0 mol/L * 5.2 L = 20.8 mol
2) Find the number of mols of Mg that will react with 20.8 mol of HCl, using the coefficients of the balanced equation
[1mol Mg / 2 mol HCl] * 20.8 mol HCl = 10.4 mol Mg
3) Transform mol to mass using the atomic mass:
10.4 mol Mg * 24.3 g/mol = 252.7 g of Mg.
<h3>
Answer:</h3>
9 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 6H₂ + O₂ → 3H₂O
[Given] 18 mol H₂
[Solve] mol H₂O
<u>Step 2: Identify Conversions</u>
[RxN] 6 mol H₂ → 3 mol H₂O
<u>Step 3: Stoich</u>
- [DA] Set up conversion:
- [DA] Simplify:
- [DA] Divide [Cancel out units]:
The process in which a gaseous substance is converted into a condensed, more usable chemical substance is called fixation