Answer:
lower mantle
Explanation:
because the core and the crust are solid.
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol
The standard enthalpy of formation for chlorine is zero but the standard entropy is larger than 0 because it is the elemental state of chlorine.
The standard enthalpy of formation for chlorine is zero because cl2 is the elemental state of chlorine and it does not require any energy for the formation of the standard state of chlorine.
The entropy of any system cannot be negative. It can only be positive or zero.
The entropy of a system will become zero only at a absolute zero temperature.
That's why the entropy of chlorine in elemental state is more than zero because absolutely zero temperature can't be obtained.
To know more about entropy, visit,
brainly.com/question/6364271
#SPJ4