Answer:
1734
Step-by-step explanation:
3 times 17 to find the number of feet =51
51 time $34 (the price per foot ) to find total
The answer is 588 students , because you must make proportions.
Shown work below
You're welcome ;)
<h3>
Answer: 80 degrees</h3>
============================================================
Explanation:
I'm assuming that segments AD and CD are tangents to the circle.
We'll need to add a point E at the center of the circle. Inscribed angle ABC subtends the minor arc AC, and this minor arc has the central angle AEC.
By the inscribed angle theorem, inscribed angle ABC = 50 doubles to 2*50 = 100 which is the measure of arc AC and also central angle AEC.
----------------------------
Focus on quadrilateral DAEC. In other words, ignore point B and any segments connected to this point.
Since AD and CD are tangents, this makes the radii EA and EC to be perpendicular to the tangent segments. So angles A and C are 90 degrees each for quadrilateral DAEC.
We just found angle AEC = 100 at the conclusion of the last section. So this is angle E of quadrilateral DAEC.
---------------------------
Here's what we have so far for quadrilateral DAEC
- angle A = 90
- angle E = 100
- angle C = 90
- angle D = unknown
Now we'll use the idea that all four angles of any quadrilateral always add to 360 degrees
A+E+C+D = 360
90+100+90+D = 360
D+280 = 360
D = 360-280
D = 80
Or a shortcut you can take is to realize that angles E and D are supplementary
E+D = 180
100+D = 180
D = 180-100
D = 80
This only works if AD and CD are tangents.
Side note: you can use the hypotenuse leg (HL) theorem to prove that triangle EAD is congruent to triangle ECD; consequently it means that AD = CD.
Answer:
C
Step-by-step explanation:
interior angle + exterior angle are supplementary
interior angle = 180° - exterior angle
⇒ interior angle = 180° - 135° = 45°
and interior angle = 180° - 100° = 80°
The sum of the 3 angles in a triangle = 180°
To find the third interior angle, subtract the sum of the 2 interior angles from 180
third interior angle = 180° - (45 + 80 )° = 180° - 125° = 55°
interior angles are 45°, 55° and 80°