Answer:
42m/s
6.06s
Explanation:
To find the initial velocity and time in which the ball is fling over the ground you use the following formulas:

θ: angle = 45°
vo: initial velocity
g: gravitational constant = 9.8m/s^2
x_max: max distance = 180 m
t_max: max time
by replacing the values of the parameters and do vo the subject of the first formula you obtain:

with this value of vo you calculate the max time:

hence, the initial velocity of the ball is 42m/s and the time in which the ball is in the air is 6.06s
- - - - - - - - - - - - -- - - - - - - - - - - - - -
TRANSLATION:
Para encontrar la velocidad inicial y el tiempo en el que la pelota está volando sobre el suelo, use las siguientes fórmulas:
θ: ángulo = 45 °
vo: velocidad inicial
g: constante gravitacional = 9.8m / s ^ 2
x_max: distancia máxima = 180 m
t_max: tiempo máximo
reemplazando los valores de los parámetros y haciendo el tema de la primera fórmula que obtiene:
con este valor de vo usted calcula el tiempo máximo:
por lo tanto, la velocidad inicial de la pelota es de 42 m / sy el tiempo en que la pelota está en el aire es de 6.06 s
5m/s
Explanation:
Given parameters:
Mass of ball = 0.1kg
Force on the ball = 5N
time taken = 0.1s
Unknown:
final speed of the ball = ?
Solution:
According to newton's second law "the net force on a body is the product of its mass and acceleration".
Force = mass x acceleration equation 1
Acceleration =
V is the final velocity
U is the initial velocity
T is the time taken
U = O since it is a stationary body;
a = 
Input "a" into equation 1
F = m x 
5 = 0.1 x 
V = 5m/s
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons
Pressure = force ( in newtons ) / area ( in m^2 )
pressure put
= 30 000 N / 0.75 m^2
= 40 000 Pa