<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s
I think your question is incomplete because the distance between destination and departure point isn't given in the question
Answer: (1, 30), (2,10), (3,40), (4,20)
Explanation:
Explanation:
Heat flow = conductivity × area × change in temperature / thickness
q' = kAΔT/t
13.3 W = k (1.56 m²) (7.8°C) / (0.0234 m)
k = 0.0256 W/m/°C
Heat lost by water = heat gained by ice
-mCΔT = mL + mCΔT
-(1000 g) (1 cal/g/°C) (12°C − 37°C) = m (79.7 cal/g) + m (1 cal/g/°C) (12°C − 0°C)
25,000 cal = (91.7 cal/g) m
m = 272.6 g