Tetrahedral arrangement is resulted upon mixing one s and three p atomic orbitals, resulting in 4 hybridized
orbitals →
hybridization.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about Hybridization
brainly.com/question/22765530
#SPJ4
Answer:
Yes,he would still be important but, for an entirely different reason
Explanation:
Stephen hawking had amyotrophic lateral sclerosis, a motor neurone disease ,and in order to continue research on his disease,he would have been an important part of the research,even if he didn't become a theoretical physicist
Reactants are what is consumed in a chemical reaction while products are what is created by the chemical reaction.
Answer:
C₄F₈
Explanation:
Using their mole ratio to compute their mass
molar mass of carbon = 12.0107 g/mol
molar mass of fluorine gas = 37.99681
let x = mass of carbon
given mass of fluorine = 1.70 g
x / 12.01067 = 1.70 / 37.99687
cross multiply
x = ( 1.70 × 12) / 37.99687 = 20.4 / 37.99687 = 0.53688 g
mass of one mole of CF₂ = 0.53688 + 1.70 = 2.23688 g
number of mole of CF₂ = 8.93 g / 2.23688 = 3.992 approx 4
molecular formula of CF₂ = 4 (CF₂) = C₄F₈
Explanation:
Moles of NaOH = 10g / (40g/mol) = 0.25mol.
0.25mol / 500g = 0.50mol / 1000g = 0.50mol/dm³.
The molarity is 0.50mol/dm³.