Answer:
1531 m
Explanation:
The motion of the jet ski is an uniformly accelerated motion, so we can find the distance travelled by using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For the jet ski in this problem,

t = 35 s
u = 0 (it starts from rest)
Solving for s, we find the distance travelled:

We can use the equation vf (the final velocity) =vi (the initial velocity) +at (aceleration times time)
We know the final velocity 100m/s, the initial velocity 0, and the acceleration (gravity) 9.8m/s^2. So, 100=0+9.8t. t=100/9.8
Answer:
1.8x10⁻³m
Explanation:
From the question above, the following information was used to solve the problem.
wavelength λ = 4.5x10⁻⁷m
Length L = 2.0 meters
distance d = 5 x 10₋⁴m
ΔY = λL/d
= 4.5x10⁻⁷m (2) / 5 x 10₋⁴m
= 0.00000045 / 0.0005
= 0.0000009/0.0005
= 0.0018
= 1.8x10⁻³m
from the solution above The separation between two adjacent bright fringes is most nearly 1.8x10⁻³m
thank you!
Answer:
1. Convection (Moving Water)
2. Radiation (Sunlight)
3. Conduction (Direct Contact)
4. Convection or Radiation (Most Likely Convection) (Moving Air/Sunlight)
5. Convection (Moving Air)
6. Radiation (Feeling Heat)
Explanation:
See Above
A plant wouldn't be able to live, I believe!