Answer:

Explanation:
The charge on one object, 
The distance between the charges, r = 0.22 m
The force between the charges, F = 4,550 N
Let q₂ is the charge on the other sphere. The electrostatic force between two charges is given by the formula as follows :

So, the charge on the other sphere is
.
Answer:
g = 11.2 m/s²
Explanation:
First, we will calculate the time period of the pendulum:

where,
T = Time period = ?
t = time taken = 135 s
n = no. of swings in given time = 98
Therefore,

T = 1.38 s
Now, we utilize the second formula for the time period of the simple pendulum, given as follows:

where,
l = length of pendulum = 54 cm = 0.54 m
g = acceleration due to gravity on the planet = ?
Therefore,

<u>g = 11.2 m/s²</u>
For starters, this question isn’t really about relativity. It’s about
energy, and E=mc^2 only makes sense if energy has the units of
(mass)*(velocity)^2. So we might as well ask: why is kinetic energy
defined as KE = ½*mv^2?
Life is what was given to us by what some people say is God. If you believe that, then your purpose is to live for him.
<h2>Electrostatic Potential Decreases</h2>
Explanation:
- If the spacing between two closely spaced oppositely charged parallel plates is decreased the electrostatic potential difference between the plates will decrease.
- An electrostatic potential that is also referred to as the electric field potential or potential drop is the amount of work required to replace a unit of charge from a reference point to a specific point inside the electric field without any change in acceleration.
- Therefore, if the distance will decrease between oppositely charged plates there will be more affinity to attract which will reduce the amount of work done thus decreasing the electric potential
∴ The Correct option is (b)