1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
g100num [7]
3 years ago
8

Some hydrogen gas is enclosed within a chamber being held at 200^\ { C} with a volume of 0.025 \rm m^3. The chamber is fitted wi

th a movable piston. Initially, the pressure in the gas is 1.50 \times 10^6 \; \rm Pa (14.8 \rm atm). The piston is slowly extracted until the pressure in the gas falls to 0.950 \times 10^6 \; \rm Pa. What is the final volume V_2 of the container? Assume that no gas escapes and that the temperature remains at 200^ { C}.
Physics
1 answer:
vlada-n [284]3 years ago
3 0

Answer:

The final volume is 0.039 m^3

Explanation:

<u>Data:</u>

Initial temperature: T1=200C

Final temperature: T2=200C

Initial pressure: P1=1.50 \times10^6 Pa

Final pressure: P2=0.950 \times10^6 Pa

Initial volume: V1=0.025m^{3}

Final volume: V2=?

Assuming hydrogen gas as a perfect gas it satisfies the perfect gas equation:

\frac{PV}{T}=nR (1)

With P the pressure, V the volume, T the temperature, R the perfect gas constant and n the number of moles. If no gas escapes the number of moles of the gas remain constant so the right side of equation (1) is a constant, that allows to equate:

\frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}}

Subscript 2 referring to final state and 1 to initial state.

solving for V2:

V_{2}=\frac{P_{1}V_{1}T_{2}}{T_{1}P_{2}}=\frac{(1.50 \times10^6)(0.025)(200)}{(200)(0.950 \times10^6)}

V_{2}=0.039 m^3

You might be interested in
Charge X has twice as much charge as particle Y. The two charges are placed near each other. Compared to the force on particle X
Art [367]

The force on charge Y is the same as the force on charge X

Explanation:

We can answer this problem by applying Newton's third law of motion, which states that:

"When an object A exerts a force on object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"

In this problem, we can identify object A as charge X and object B as charge Y. The magnitude of the electrostatic force between them is given by

F=k\frac{q_x q_y}{r^2}  (1)

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_x, q_y are the two charges

r is the separation between the two charges

According to Newton's third law, therefore, the magnitude of the force exerted by charge X on charge Y is the  same as the force exerted by charge Y on charge X (and it is given by eq.(1)), however their directions are opposite.

Learn more about Newton's third law:

brainly.com/question/11411375

#LearnwithBrainly

6 0
3 years ago
In a real system of levers, wheels, or pulleys, the AMA is less than the IMA because _____.
pickupchik [31]
In a real system of levers, wheels, or pulleys, the AMA is less than the IMA because of friction. 
AMA (Actual mechanical advantage) is found by dividing output force by effort force. The actual mechanical advantage will always be less than the ideal mechanical advantage. The ideal mechanical advantage assumes perfect efficiency which doesn't account for friction, while actual mechanical advantage does. Therefore; the IMA is always greater than the actual mechanical advantage because all machines must overcome friction. 
5 0
3 years ago
#1 Not sure where to start. This is for AP Physics!
yaroslaw [1]

First,

\rho=\dfrac mV

where \rho is density, m is mass, and V is volume. We can compute the volume of the roll:

2.7\,\dfrac{\mathrm g}{\mathrm{cm}^3}=\dfrac{1275\,\mathrm g}V

\implies V\approx472.22\,\mathrm{cm}^3\approx4.72\,\mathrm m^3

When the roll is unfurled, the aluminum will be a rectangular box (a very thin one), so its volume will be the product of the given area and its thickness x. Note that we're assuming the given area is not the actual total surface area of the aluminum box, but just the area of the largest face (i.e. the area of one side of the unrolled sheet of aluminum).

So we have

V=Ax

where A is the given area, so

4.72\,\mathrm m^3=\left(18.5\,\mathrm m^2\right)x

\implies x\approx0.255\,\mathrm m=255\,\mathrm{mm}

If we're taking significant digits into account, the volume we found would have been V=470\,\mathrm m^3, in turn making the thickness x=250\,\mathrm{mm}.

8 0
3 years ago
A force of 960 newtons stretches a spring 4 meters. A mass of 60 kilograms is attached to the end of the spring and is initially
Drupady [299]

Answer:

x(t) = - 6 cos 2t

Explanation:

Force of spring = - kx

k= spring constant

x= distance traveled by compressing

But force = mass × acceleration

==> Force = m × d²x/dt²

===> md²x/dt² = -kx

==> md²x/dt² + kx=0   ------------------------(1)

Now Again, by Hook's law

Force = -kx

==> 960=-k × 400

==> -k =960 /4 =240 N/m

ignoring -ve sign k= 240 N/m

Put given data in eq (1)

We get

60d²x/dt² + 240x=0

==> d²x/dt² + 4x=0

General solution for this differential eq is;

x(t) = A cos 2t + B sin 2t   ------------------------(2)

Now initially

position of mass spring

at time = 0 sec

x (0) = 0 m

initial velocity v= = dx/dt=  6m/s

from (2) we have;

dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)

put t =0 and dx/dt = v(0) = -6 we get;

-2A sin 2(0)+2Bcos(0) =-6

==> 2B = -6

B= -3

Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get

x(t) = - 6 cos 2t

==>  

4 0
3 years ago
When drinking at a private even, you should assume that drinks will ___.
allochka39001 [22]

When drinking at a private event, you should assume that drinks will be STRONGER THAN NORMAL.

At private events, some hosts have the habit of mixing different drinks together in order to increase the intoxicating power of the drinks. This does not normally happen when one is buying from restaurants or other commercial places. Thus, to be on the safe side, one should always assume that drinks will be stronger when one is attending a private event, this will caution one to drink responsibly in order to avoid intoxication.

8 0
3 years ago
Other questions:
  • Mr. Llama walked from his house to the bus stop. The bus stop is 2 miles from his house. He returned back to his house from the
    15·1 answer
  • When carrying extra weight, the space formed between the top of your head and the two axles of the motorcycle is referred to as
    10·1 answer
  • Which is an organic compound? Sample b contains cesium and chlorine, sample a contains carbon, hydrogen, and oxygen, or sample c
    6·2 answers
  • Examine the resistor network. The answers to each of the questions can be either "none" or the numbers of one or more resistors.
    7·1 answer
  • PLEASE HELP I NEED THIS ANSWER BADLY!!!!!!!! Explain how might an animal respond to stimuli as compared to a plant?
    7·1 answer
  • A 26.5-mW laser beam of diameter 1.88 mm is reflected at normal incidence by a perfectly reflecting mirror. Calculate the radiat
    7·1 answer
  • Freshly picked cucumbers are dropped into a bin from a height of 1.25 m above the bottom of the bin. Assuming that the bin is em
    11·1 answer
  • How much force must be applied on a blade of length 4cm and thickness of 0.1mm to exert a pressure of 4000000pa?
    5·1 answer
  • Tips to get friends?
    10·1 answer
  • Average acceleration of an object is the:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!