1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
3 years ago
6

A paintball’s mass is 0.0032kg. A typical paintball strikes a target moving at 85.3 m/s.

Physics
1 answer:
vekshin13 years ago
4 0

Answer:

A)  If the paintball stops completely the magnitude of the change in the paintball’s momentum is  p=0.273kg*m/s

B) If the paintball bounces off its target and afterward moves in the opposite direction with the same speed, the change in the paintball’s momentum is  p=0.546kg*m/s

C) A paintball bouncing off your skin in the opposite direction with the same speed hurts more than a paintball exploding upon your skin because of the strength exerted is twice than if it explodes.

Explanation:

Hi

A) We use the formula of momentum p=mv, so we have p=0.0032kg*85.3m/s=0.273kg*m/s

B) We use the same formula above, then due we have a change of direction at the same speed, therefore the change in the momentum is the double so

p=2*0.0032kg*85.3m/s=0.546kg*m/s.

C) The average strength of the force an object exerts during impact is determined by the amount the object’s momentum changes. therefore

F=\frac{\Delta p}{\Delta t}, as we don't have any data about the impact time but we know momentum is twice, time does no matter and strength is twice too.

You might be interested in
If eight water waves pass an ocean buoy each minute, and successive wave crests are 20 m apart, find the wave speed:____________
Llana [10]

Answer:

The wave speed is calculated below:

Explanation:

Given,

number of waves passed per minute = 8

time period = 1 minute = 60 s

distance between successive wave crests = 20 m

waves passing interval per second = \frac{8}{60} s^{-1}

Now,

wave speed = 20 m × \frac{8}{60} s^{-1}

                     = \frac{8}3} m/s

                     = 2.67 m/s

Hence the wave speed is 2.67 m/s.

4 0
3 years ago
If you push a 4-kg mass...
Lena [83]

Answer:

B

Explanation:

F = ma , a = F/m

a1 = F/10 and a2 = F/4

Since Force is constant, a2 will we greater than a1

4 0
3 years ago
What is required for force to come into play​
White raven [17]

Answer:

An interaction of one object with another object results in a force between the two objects. Thus, at-least two objects must interact for a force to come into play.

7 0
3 years ago
An orange of mass m falls into a wagon. Assume the orange experiences upward acceleration magnitude a
hammer [34]

Answer:f^n=m(a+g)

Explanation:khan academy said

8 0
3 years ago
A 0.6 kg block attached to a spring of force constant 13.6 N/m oscillates with an amplitude of 9 cm. Find the maximum speed of t
mash [69]

Answer:

1) 0.43 meters per second

2) 0.21 meters per second

3) 1.02 \frac{m}{s^{2}}

4) 0.66 seconds

Explanation:

part 1

By conservation of energy, the maximum kinetic energy (K) of the block is at equilibrium point where the potential energy is zero. So, at the equilibrium kinetic energy is equal to maximum potential energy (U):

K=U

\frac{mv^2}{2}=\frac{kx_{max}^2}{2}

With m the mass, v the speed, k the spring constant and xmax the maximum position respect equilibrium position. Solving for v

v=\sqrt{\frac{kx_{max}^2}{m}}=\sqrt{\frac{(13.6)(0.09m)^2}{0.6}}=0.43\frac{m}{s}

part 2

Again by conservation of energy we have kinetic energy equal potential energy:

\frac{mv^2}{2}=\frac{kx_{max}^2}{2}=

v=\sqrt{\frac{kx_{max}^2}{m}}=\sqrt{\frac{(13.6)(0.045m)^2}{0.6}}=0.21\frac{m}{s}

part 3

Acceleration can be find using Newton's second law:

F=ma

with F the force, m the mass and a the acceleration, but elastic force is -kx, so:

-kx=ma

a= -\frac{kx}{m}=-\frac{(13.6)(0.045)}{0.6}=-1.02\frac{m}{s^{2}}

part 4

The period of an oscillator is the time it takes going from one extreme to the other one, that is going form 4.5 cm to -4.5 cm respect the equilibrium position. That period is:

T=2\pi\sqrt{\frac{m}{k}}=T=2\pi\sqrt{\frac{0.6}{13.6}}=1.32s

So between 0 and 4.5 cm we have half a period:

t=\frac{T}{2}=0.66s

7 0
3 years ago
Other questions:
  • 25POINTS please answer this
    12·2 answers
  • What is the difference between rutherford's model of the atom and bohr's model of the atom
    6·1 answer
  • An object in circular motion has velocity that is constantly changing. The direction of the acceleration is
    9·1 answer
  • Will mark as BRAINLIEST....... The Displacement x of particle moving in one dimension under the action of constant force is rela
    9·1 answer
  • I really need help!!
    11·2 answers
  • YOU GUYS HELPPPPPPPPPPPPPPPP!!!!!! PLEAZEEEE
    5·2 answers
  • 7. What can be done to prevent such devastating destruction as seen in the earthquake in Haiti? correct me if im wrong on the su
    12·1 answer
  • Displacement vectors of 4 km north, 2 km south, 5 km north, and 5 km south combine to a total displacement of
    10·1 answer
  • Which of the following parallel plate diagrams would have the greatest electric fields between them?
    6·1 answer
  • What are the two conditions for equilibrium of a rigid body? how would this experiment demonstrate their validity?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!